Production of C4-C6 for Bioenergy and Biomaterials

바이오에너지 및 바이오화학원료인 C4-C6 생산

  • Kim, Byung-Chun (Department of Chemical Engineering, Department of Fuel Cells and Hydrogen Technology, Hanyang University) ;
  • Yi, Sung Chul (Department of Chemical Engineering, Department of Fuel Cells and Hydrogen Technology, Hanyang University) ;
  • Sang, Byoung-In (Department of Chemical Engineering, Department of Fuel Cells and Hydrogen Technology, Hanyang University)
  • 김병천 (한양대학교 공과대학 화공생명공학부) ;
  • 이성철 (한양대학교 공과대학 화공생명공학부) ;
  • 상병인 (한양대학교 공과대학 화공생명공학부)
  • Received : 2011.09.29
  • Published : 2011.10.10

Abstract

Depletion of petroleum increased the need of alternative energy and chemical resources. Biomass, a renewable resource, can be transformed to bioenergy and biomaterials, and the materials from biomass will ultimately substitute petroleum based energy and chemical compounds. In this perspective, production of C4-C6 compounds for bioenergy and biomaterials are described for understating of current research progress. n-Butanol and n-butyric acid, the major C4 compounds, are produced by Clostridium tyrobutyricum, Clostridium beijerinckii, and Clostridium acetobutylicum. n-Hexanoic acid, a typical C6 compound, is produced by Clostridium kluyveri and Megasphaera elsdenii. Reported maximum amount of n-butanol, n-butyric acid and n-hexanoic acid was 21, 55, and 19 g/L, respectively, and extraction of these C4-C6 compounds are induced increase production by those anaerobic bacteria. In addition, a new bacterium Clostridium sp. BS-1 produced 5 g/L of n-hexanoic acid using galactitol.

Keywords

biomaterials;bioenergy;butanol;n-butyric acid;n-hexanoic acid

Acknowledgement

Supported by : Ministry of Knowledge and Economy (MKE)

References

  1. M. Kleinert and T. Barth, Energy & Fuels, 22, 1371 (2008). https://doi.org/10.1021/ef700631w
  2. M. Parikka, Biomass Bioenergy, 27, 613 (2004). https://doi.org/10.1016/j.biombioe.2003.07.005
  3. H. L. Chum and R. P. Overend, Advances in Solar Energy: an Annual Review, ed. Y. Goswami, 83, American Solar Energy Society, Boulder (2003).
  4. P. Forward, Food Bureau, Market and Industry Services Branch, Dept of Agriculture and Agri-Food, Ottawa (1994).
  5. A. J. Ragauskas, C. K. Williams, B. H. Davison, G. Britovsek, J. Cairney, C. A. Eckert, W. J. Frederick, Jr., J. P. Hallett, D. J. Leak, C. L. Liotta, J. R. Mielenz, R. Murphy, R. Templer, and T. Tschaplinski, Science, 311, 484 (2006). https://doi.org/10.1126/science.1114736
  6. B. H. Kim and G. M. Gadd, Bacterial physiology and metabolism. Cambridge University Press, Cambridge (2008).
  7. S.-M. Lee, M. O. Cho, C. H. Park, Y.-C. Chung, J. H. Kim, B.-I. Sang, and Y. S. Um, Energy Fuels, 22, 3459 (2008). https://doi.org/10.1021/ef800076j
  8. J. Formanek, R. Mackie, and H. P. Blaschek, Appl. Environ. Microbiol., 63, 2306 (1997).
  9. S. R. Wilkinson and M. Young, J. Bacteriol., 177, 439 (1995). https://doi.org/10.1128/jb.177.2.439-448.1995
  10. C. B. Milne, J. A. Eddy, R. Raju, S. Ardekani, P. J. Kim, R. S. Senger, Y. S. Jin, H. P. Blaschek, and N. D. Price, BMC Syst. Biol., 5, 130 (2011). https://doi.org/10.1186/1752-0509-5-130
  11. S. A. Survase, G. Jurgens, A. van Heiningen, and T. Granstrom, Appl. Microbiol. Biotechnol., 91, 1305 (2011). https://doi.org/10.1007/s00253-011-3322-3
  12. T. Guo, Y. Tang, Y. L. Xi, A. Y. He, B. J. Sun, H. Wu, D. F. Liang, M. Jiang, and P. K. Ouyang, Biotechnol. Lett., doi: 10.1007/s10529-011-0702-9 (2011).
  13. D. T. Jones and D. R. Woods, Microbiol. Rev., 50, 484 (1986).
  14. J. Lee, H. Yun, A. M. Feist, B. O. Palsson, and S. Y. Lee, Appl. Microbiol. Biotechnol., 80, 849 (2008). https://doi.org/10.1007/s00253-008-1654-4
  15. D. Michel-Savin, R. Marchal, and J. P. Vandecasteele, Appl. Microbiol. Biotechnol., 34, 172 (1990). https://doi.org/10.1007/BF00166775
  16. D. Michel-Savin, R. Marchal, and J. P. Vandecasteele, Appl. Microbiol. Biotechnol., 33, 127 (1990).
  17. Z. Wu and S. T. Yang, Biotechnol. Bioeng., 82, 93 (2003). https://doi.org/10.1002/bit.10542
  18. R. J. Mitchell, J. S. Kim, B. S. Jeon, and B. I. Sang, Bioresour. Technol., 100, 5352 (2009). https://doi.org/10.1016/j.biortech.2009.05.046
  19. L. Jiang, J. Wang, S. Liang, X. Wang, P. Cen, and Z. Xu, Bioresour. Technol., 100, 3403 (2009). https://doi.org/10.1016/j.biortech.2009.02.032
  20. E. T. Sauer, Kirk-Othmer encyclopedia of chemical technology, ed. M. Howe-Grant, 179, Wiley-Interscience, New York (1992).
  21. S. Budavari, The Merck index: an encyclopedia of chemicals, drugs, and biologics, Merck, Rahway (1989).
  22. P. F. Levy, J. E. Sanderson, E. Ashare, and S. R. d. Riel, CRC liquid fuels developments, ed. D. L. Wise, 159, CRC Boca Raton, Fla (1983).
  23. P. F. Levy, J. E. Sanderson, E. Ashare, D. L. Wise, and M. S. Molyneaux, Liquid fuels production from biomass. US Department of Energy, Washington (1980).
  24. P. F. Levy, J. E. Sanderson, R. G. Kispert, and D. L. Wise, Enzyme. Microb. Technol., 3, 207 (1981). https://doi.org/10.1016/0141-0229(81)90087-9
  25. H. A. Barker and S. M. Taha, J. Bacteriol., 43, 347 (1942).
  26. E. F. Kohlmiller, Jr. and H. Gest, J. Bacteriol., 61, 269 (1951).
  27. R. F. Rosenberger, Ph. D. Dissertation, Edinburgh University, Edinburgh (1952).
  28. L. V. Holdeman, E. P. Cato, and W. E. C. Moore, Anaerobe laboratory manual, 4th, Virginia Polytechnic Institute and State University, Blacksburg (1977).
  29. B. R. Genthner, C. L. Davis, and M. P. Bryant, Appl. Environ. Microbiol., 42, 12 (1981).
  30. J. Gutierrez, R. E. Davis, I. L. Lindahl, and E. J. Warwick, Appl. Microbiol., 7, 16 (1959).
  31. D. Giesecke, S. Wiesmayr, and M. Ledinek, J. Gen. Microbiol., 64, 123 (1970). https://doi.org/10.1099/00221287-64-1-123
  32. M. Rogosa, Int. J. Syst. Bacteriol., 21, 187 (1971). https://doi.org/10.1099/00207713-21-2-187
  33. F. A. Roddick and M. L. Britz, VIIth Australian Biotechnology Conference Melbourne, 386 (1986).
  34. M. P. Bryant and I. M. Robinson, J. Bacteriol., 84, 605 (1962).
  35. T. Hino, K. Miyazaki, and S. Kuroda, J. Gen. Appl. Microbiol., 37, 121 (1991). https://doi.org/10.2323/jgam.37.121
  36. H. Marx, A. B. Graf, N. E. Tatto, G. G. Thallinger, D. Mattanovich, and M. Sauer, J. Bacteriol., 193, 5578 (2011). https://doi.org/10.1128/JB.05861-11
  37. A. A. Herrero, Trends Biotechnol., 1, 49 (1983). https://doi.org/10.1016/0167-7799(83)90069-0
  38. F. A. Roddick and M. L. Britz, J. Chem. Tech. Biotechnol., 69, 383 (1997). https://doi.org/10.1002/(SICI)1097-4660(199707)69:3<383::AID-JCTB723>3.0.CO;2-H
  39. W. R. Kenealy and D. M. Waselefsky, Arch Microbiol, 141, 187 (1985). https://doi.org/10.1007/BF00408056
  40. W. R. Kenealy, Y. Cao, and P. J. Weimer, Appl. Microbiol. Biotechnol., 44, 507 (1995). https://doi.org/10.1007/BF00169952
  41. Y. Shi and P. J. Weimer, Appl. Environ. Microbiol., 58, 2583 (1992).
  42. P. J. Weimer, Arch. Microbiol., 160, 288 (1993). https://doi.org/10.1007/BF00292079
  43. S. G. Wi, H. J. Kim, S. A. Mahadevan, D. J. Yang, and H. J. Bae, Bioresour. Technol., 100, 6658 (2009). https://doi.org/10.1016/j.biortech.2009.07.017
  44. B. S. Jeon, B. C. Kim, Y. Um, and B. I. Sang, Appl. Microbiol. Biotechnol., 88, 1161 (2010). https://doi.org/10.1007/s00253-010-2827-5
  45. M. V. Smith and M. D. Pierson, Appl. Environ. Microbiol., 37, 978 (1979).
  46. R. Bar and J. L. Gainer, Biotechnol. Progr., 3, 109 (1987). https://doi.org/10.1002/btpr.5420030208
  47. C. Weilnhammer and E. Blass, Chem. Eng. Technol., 17, 365 (1994). https://doi.org/10.1002/ceat.270170602
  48. R. Basu and K. K. Sirkar, AIChE J, 37, 383 (1991). https://doi.org/10.1002/aic.690370309
  49. R. Basu and K. K. Sirkar, J. Membr. Sci., 75, 131 (1992). https://doi.org/10.1016/0376-7388(92)80012-9