Production of C4-C6 for Bioenergy and Biomaterials

바이오에너지 및 바이오화학원료인 C4-C6 생산

  • Kim, Byung-Chun (Department of Chemical Engineering, Department of Fuel Cells and Hydrogen Technology, Hanyang University) ;
  • Yi, Sung Chul (Department of Chemical Engineering, Department of Fuel Cells and Hydrogen Technology, Hanyang University) ;
  • Sang, Byoung-In (Department of Chemical Engineering, Department of Fuel Cells and Hydrogen Technology, Hanyang University)
  • 김병천 (한양대학교 공과대학 화공생명공학부) ;
  • 이성철 (한양대학교 공과대학 화공생명공학부) ;
  • 상병인 (한양대학교 공과대학 화공생명공학부)
  • Received : 2011.09.29
  • Published : 2011.10.10


Depletion of petroleum increased the need of alternative energy and chemical resources. Biomass, a renewable resource, can be transformed to bioenergy and biomaterials, and the materials from biomass will ultimately substitute petroleum based energy and chemical compounds. In this perspective, production of C4-C6 compounds for bioenergy and biomaterials are described for understating of current research progress. n-Butanol and n-butyric acid, the major C4 compounds, are produced by Clostridium tyrobutyricum, Clostridium beijerinckii, and Clostridium acetobutylicum. n-Hexanoic acid, a typical C6 compound, is produced by Clostridium kluyveri and Megasphaera elsdenii. Reported maximum amount of n-butanol, n-butyric acid and n-hexanoic acid was 21, 55, and 19 g/L, respectively, and extraction of these C4-C6 compounds are induced increase production by those anaerobic bacteria. In addition, a new bacterium Clostridium sp. BS-1 produced 5 g/L of n-hexanoic acid using galactitol.


biomaterials;bioenergy;butanol;n-butyric acid;n-hexanoic acid


Supported by : Ministry of Knowledge and Economy (MKE)


  1. M. Kleinert and T. Barth, Energy & Fuels, 22, 1371 (2008).
  2. M. Parikka, Biomass Bioenergy, 27, 613 (2004).
  3. H. L. Chum and R. P. Overend, Advances in Solar Energy: an Annual Review, ed. Y. Goswami, 83, American Solar Energy Society, Boulder (2003).
  4. P. Forward, Food Bureau, Market and Industry Services Branch, Dept of Agriculture and Agri-Food, Ottawa (1994).
  5. A. J. Ragauskas, C. K. Williams, B. H. Davison, G. Britovsek, J. Cairney, C. A. Eckert, W. J. Frederick, Jr., J. P. Hallett, D. J. Leak, C. L. Liotta, J. R. Mielenz, R. Murphy, R. Templer, and T. Tschaplinski, Science, 311, 484 (2006).
  6. B. H. Kim and G. M. Gadd, Bacterial physiology and metabolism. Cambridge University Press, Cambridge (2008).
  7. S.-M. Lee, M. O. Cho, C. H. Park, Y.-C. Chung, J. H. Kim, B.-I. Sang, and Y. S. Um, Energy Fuels, 22, 3459 (2008).
  8. J. Formanek, R. Mackie, and H. P. Blaschek, Appl. Environ. Microbiol., 63, 2306 (1997).
  9. S. R. Wilkinson and M. Young, J. Bacteriol., 177, 439 (1995).
  10. C. B. Milne, J. A. Eddy, R. Raju, S. Ardekani, P. J. Kim, R. S. Senger, Y. S. Jin, H. P. Blaschek, and N. D. Price, BMC Syst. Biol., 5, 130 (2011).
  11. S. A. Survase, G. Jurgens, A. van Heiningen, and T. Granstrom, Appl. Microbiol. Biotechnol., 91, 1305 (2011).
  12. T. Guo, Y. Tang, Y. L. Xi, A. Y. He, B. J. Sun, H. Wu, D. F. Liang, M. Jiang, and P. K. Ouyang, Biotechnol. Lett., doi: 10.1007/s10529-011-0702-9 (2011).
  13. D. T. Jones and D. R. Woods, Microbiol. Rev., 50, 484 (1986).
  14. J. Lee, H. Yun, A. M. Feist, B. O. Palsson, and S. Y. Lee, Appl. Microbiol. Biotechnol., 80, 849 (2008).
  15. D. Michel-Savin, R. Marchal, and J. P. Vandecasteele, Appl. Microbiol. Biotechnol., 34, 172 (1990).
  16. D. Michel-Savin, R. Marchal, and J. P. Vandecasteele, Appl. Microbiol. Biotechnol., 33, 127 (1990).
  17. Z. Wu and S. T. Yang, Biotechnol. Bioeng., 82, 93 (2003).
  18. R. J. Mitchell, J. S. Kim, B. S. Jeon, and B. I. Sang, Bioresour. Technol., 100, 5352 (2009).
  19. L. Jiang, J. Wang, S. Liang, X. Wang, P. Cen, and Z. Xu, Bioresour. Technol., 100, 3403 (2009).
  20. E. T. Sauer, Kirk-Othmer encyclopedia of chemical technology, ed. M. Howe-Grant, 179, Wiley-Interscience, New York (1992).
  21. S. Budavari, The Merck index: an encyclopedia of chemicals, drugs, and biologics, Merck, Rahway (1989).
  22. P. F. Levy, J. E. Sanderson, E. Ashare, and S. R. d. Riel, CRC liquid fuels developments, ed. D. L. Wise, 159, CRC Boca Raton, Fla (1983).
  23. P. F. Levy, J. E. Sanderson, E. Ashare, D. L. Wise, and M. S. Molyneaux, Liquid fuels production from biomass. US Department of Energy, Washington (1980).
  24. P. F. Levy, J. E. Sanderson, R. G. Kispert, and D. L. Wise, Enzyme. Microb. Technol., 3, 207 (1981).
  25. H. A. Barker and S. M. Taha, J. Bacteriol., 43, 347 (1942).
  26. E. F. Kohlmiller, Jr. and H. Gest, J. Bacteriol., 61, 269 (1951).
  27. R. F. Rosenberger, Ph. D. Dissertation, Edinburgh University, Edinburgh (1952).
  28. L. V. Holdeman, E. P. Cato, and W. E. C. Moore, Anaerobe laboratory manual, 4th, Virginia Polytechnic Institute and State University, Blacksburg (1977).
  29. B. R. Genthner, C. L. Davis, and M. P. Bryant, Appl. Environ. Microbiol., 42, 12 (1981).
  30. J. Gutierrez, R. E. Davis, I. L. Lindahl, and E. J. Warwick, Appl. Microbiol., 7, 16 (1959).
  31. D. Giesecke, S. Wiesmayr, and M. Ledinek, J. Gen. Microbiol., 64, 123 (1970).
  32. M. Rogosa, Int. J. Syst. Bacteriol., 21, 187 (1971).
  33. F. A. Roddick and M. L. Britz, VIIth Australian Biotechnology Conference Melbourne, 386 (1986).
  34. M. P. Bryant and I. M. Robinson, J. Bacteriol., 84, 605 (1962).
  35. T. Hino, K. Miyazaki, and S. Kuroda, J. Gen. Appl. Microbiol., 37, 121 (1991).
  36. H. Marx, A. B. Graf, N. E. Tatto, G. G. Thallinger, D. Mattanovich, and M. Sauer, J. Bacteriol., 193, 5578 (2011).
  37. A. A. Herrero, Trends Biotechnol., 1, 49 (1983).
  38. F. A. Roddick and M. L. Britz, J. Chem. Tech. Biotechnol., 69, 383 (1997).<383::AID-JCTB723>3.0.CO;2-H
  39. W. R. Kenealy and D. M. Waselefsky, Arch Microbiol, 141, 187 (1985).
  40. W. R. Kenealy, Y. Cao, and P. J. Weimer, Appl. Microbiol. Biotechnol., 44, 507 (1995).
  41. Y. Shi and P. J. Weimer, Appl. Environ. Microbiol., 58, 2583 (1992).
  42. P. J. Weimer, Arch. Microbiol., 160, 288 (1993).
  43. S. G. Wi, H. J. Kim, S. A. Mahadevan, D. J. Yang, and H. J. Bae, Bioresour. Technol., 100, 6658 (2009).
  44. B. S. Jeon, B. C. Kim, Y. Um, and B. I. Sang, Appl. Microbiol. Biotechnol., 88, 1161 (2010).
  45. M. V. Smith and M. D. Pierson, Appl. Environ. Microbiol., 37, 978 (1979).
  46. R. Bar and J. L. Gainer, Biotechnol. Progr., 3, 109 (1987).
  47. C. Weilnhammer and E. Blass, Chem. Eng. Technol., 17, 365 (1994).
  48. R. Basu and K. K. Sirkar, AIChE J, 37, 383 (1991).
  49. R. Basu and K. K. Sirkar, J. Membr. Sci., 75, 131 (1992).