DOI QR코드

DOI QR Code

Understanding Drug-Protein Interactions in Escherichia coli FabI and Various FabI Inhibitor Complexes

  • Lee, Han-Myoung (Center for Superfunctional Materials, Department of Chemistry, Pohang University of Science and Technology) ;
  • Singh, N. Jiten (Center for Superfunctional Materials, Department of Chemistry, Pohang University of Science and Technology)
  • Received : 2010.10.25
  • Accepted : 2010.11.08
  • Published : 2011.01.20

Abstract

Many ligands have been experimentally designed and tested for their activities as inhibitors against bacterial enoyl-ACP reductase (FabI), ENR. Here the binding energies of the reported ligands with the E. coli ENR-$NAD^+$ were calculated, analyzed and compared, and their molecular dynamics (MD) simulation study was performed. IDN, ZAM and AYM ligands were calculated to have larger binding energies than TCL and IDN has the largest binding energy among the considered ligands (TCL, S54, E26, ZAM, AYM and IDN). The contribution of residues to the ligand binding energy is larger in E. coli ENR-NAD+-IDN than in E. coli ENR-$NAD^+$-TCL, while the contribution of $NAD^+$ is smaller for IDN than for TCL. The large-size ligands having considerable interactions with residues and $NAD^+$ have many effective functional groups such as aromatic $\pi$ rings, acidic hydroxyl groups, and polarizable amide carbonyl groups in common. The cation-$\pi$ interactions have large binding energies, positively charged residues strongly interact with polarisable amide carbonyl group, and the acidic phenoxyl group has strong H-bond interactions. The residues which have strong interactions with the ligands in common are Y146, Y156, M159 and K163. This study of the reported inhibitor candidates is expected to assist the design of feasible ENR inhibitors.

References

  1. Kruh, N. A.; Borgaro, J. G.; Ruzsicska, B. P.; Xu, H.; Tonge, P. J. J. Biol. Chem. 2008, 283, 31719. https://doi.org/10.1074/jbc.M802169200
  2. Baldock, C.; Rafferty, J. B.; Sedelnikova, S. E.; Baker, P. J.; Stuitje, A. R.; Slabas, A. R.; Hawkes, T. R.; Rice, D. W. Science 1996, 274, 2107. https://doi.org/10.1126/science.274.5295.2107
  3. Heath, R. J.; Li, J.; Roland, G. E.; Rock, C. O. J. Biol. Chem. 2000, 275, 4654. https://doi.org/10.1074/jbc.275.7.4654
  4. Priyadarshi, A.; Kim, E. E.; Hwang, K. Y. Proteins 2010, 78, 480. https://doi.org/10.1002/prot.22581
  5. Gagneux, S.; Long, C. D.; Small, P. M.; Van, T.; Schoolnik, G. K.; Bohannan, B. J. M. Science 2006, 312, 1944. https://doi.org/10.1126/science.1124410
  6. Hall, N.; Karras, M.; Raine, J. D.; Carlton, J. M.; Kooij, T. W. A.; Berriman, M.; Florens, L.; Janssen, C. S.; Pain, A.; Christophides, G. K.; James, K.; Rutherford, K.; Harris, B.; Harris, D.; Churcher, C.; Quail, M. A.; Ormond, D.; Doggett, J.; Trueman, H. E.; Mendoza, J.; Bidwell, S. L.; Rajandream, M. A.; Carucci, D. J.; Yates, J. R.; Kafatos, F. C.; Janse, C. J.; Barrell, B.; Turner, C. M. R.; Waters, A. P.; Sinden, R. E. Science 2005, 307, 82. https://doi.org/10.1126/science.1103717
  7. Kapoor, M.; Gopalakrishnapai, J.; Surolia, N.; Surolia, A. Biochem. J. 2004, 381, 735. https://doi.org/10.1042/BJ20040302
  8. Perozzo, R.; Kuo, M.; bir Singh Sidhu, A.; Valiyaveettil, J. T.; Bittman, R.; Jacobs, Jr., W. R.; Fidock, D. A.; Sacchettini, J. C. J. Biol. Chem. 2002, 277, 13106. https://doi.org/10.1074/jbc.M112000200
  9. McMurray, L. M.; Oethinger, M.; Levy, S. B. Nature 1998, 394, 531. https://doi.org/10.1038/28970
  10. Heath, R. J.; Yu, Y. T.; Shapiro, M. A.; Olson, E.; Rock, C. O. J. Biol. Chem. 1998, 273, 30316. https://doi.org/10.1074/jbc.273.46.30316
  11. Levy, C. W.; Roujeinikova, A.; Sedelnikova, S.; Baker, P. J.; Stuitje, A. R.; Slabas, A. R.; Rice, D. W.; Rafferty, J. B. Nature 1999, 398, 383. https://doi.org/10.1038/18803
  12. McMurry, L. M.; McDermott, P. F.; Levy, S. B. Antimicrob. Agents Chemother. 1999, 43, 711. https://doi.org/10.1093/jac/43.5.711
  13. Slater-Radosti, C.; Van Aller, G.; Greenwood, R.; Nicholas. R.; Keller, P. M.; DeWolf, W. E., Jr.; Fan, F.; Payne, D. J.; Jaworski, D. D. J. Antimicrob. Chemother. 2001, 48, 1. https://doi.org/10.1093/jac/48.1.1
  14. Levy, S. B. Emerg. Infect. Dis. 2001, 7, 512. https://doi.org/10.3201/eid0707.017705
  15. Qiu, X.; Janson, C. A.; Court, R. I.; Smyth, M. G.; Payne, D. J.; Abdel-Meguid, S. S. Protein Sc. 1999, 8, 2529.
  16. Takahata, S.; Iida, M.; Yoshida, T.; Kumura, K.; Kitagawa, H.; Hoshiko, S. J. Antibiol. 2007, 60, 123. https://doi.org/10.1038/ja.2007.11
  17. Oliveira, J. S.; Pereira, J. H.; Canduri, F.; Rodrigues, N. C.; de Souza, O. N.; de Azevedo, W. F.; Basso, L. A.; Santos, D. S. J. Mol. Biol. 2006, 359, 646. https://doi.org/10.1016/j.jmb.2006.03.055
  18. Baldock, C.; Rafferty, J. B.; Sedelnikova, S. E.; Bithell, S.; Stuitje, A. R.; Slabas, A. R.; Rice, D. W. Acta Cryst. 1996, D52, 1181.
  19. Heerding, D. A.; Chan, G.; Dewolf, W. E., Jr.; Fosberry, A. P.; Janson, C. A.; Jaworski, D. D.; McManus, E.; Miller, W. H.; Moore, T. D.; Payne, D. J.; Qiu, X.; Rittenhouse, S. F.; Slater-Radosti, C.; Smith, W.; Takata, D. T.; Vaidya, K. S.; Yuan, C. C. K.; Huffman, W. F. Bioorg. Med. Chem. Lett. 2001, 11, 2061. https://doi.org/10.1016/S0960-894X(01)00404-8
  20. Seefeld, M. A.; Miller, W. H.; Newlander, K. A.; Burgess, W. J.; Payne, D. J.; Rittenhouse, S. F.; Moore, T. D.; DeWolf, W. E., Jr.; Keller, P. M.; Qiu, X.; Janson, C. A.; Vaidya, K.; Fosberry, A. P.; Smyth, M. G.; Jaworski, D. D.; Slater-Radosti, C.; Huffman, W. F. Bioorg. Med. Chem. Lett. 2001, 11, 2241. https://doi.org/10.1016/S0960-894X(01)00405-X
  21. Miller, W. H.; Seefeld, M. A.; Newlander, K. A.; Uzinskas, I. N.; Burgess, W. J.; Heerding, D. A.; Yuan, C. C. K.; Head, M. S.; Payne, D. J.; Rittenhouse, S. F.; Moore, T. D.; Pearson, S. C.; Berry, V.; DeWolf, W. E., Jr.; Keller, P. M.; Polizzi, B. J.; Qiu, X.; Janson, C. A.; Huffman, W. F. J. Med. Chem. 2002, 45, 3246. https://doi.org/10.1021/jm020050+
  22. Seefeld, M. A.; Miller, W. H.; Newlander, K. A.; Burgess, W. J.; DeWolf, W. E., Jr.; Elkins, P. A.; Head, M. S.; Jakas, D. R.; Janson, C. A.; Keller, P. M.; Manley, P. J.; Moore, T. D.; Payne, D. J.; Pearson, S.; Polizzi, B. J.; Qiu, X.; Rittenhouse, S. F.; Uzinskas, I. N.; Wallis, N. G.; Huffman, W. F. J. Med. Chem. 2003, 46, 1627. https://doi.org/10.1021/jm0204035
  23. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B. et al. GAUSSIAN 09, Revision A.02, Gaussian, Inc.: Pittsburgh, PA, 2009.
  24. Bayly, C. I.; Cieplak, P.; Cornell, W. D.; Kollman, P. A. J. Phys. Chem. 1993, 97, 10269. https://doi.org/10.1021/j100142a004
  25. Holmberg, N.; Ryde, U.; Bulow, L. Protein Eng. 1999, 12, 851. https://doi.org/10.1093/protein/12.10.851
  26. Case, D. A.; Darden, T. A.; Cheatham, T. E., III.; Simmerling, C. L.; Wang, J.; Duke, R. E.; Luo, R.; Merz, K. M.; Pearlman, D. A.; Crowley, M.; Wlker, R. C.; Zhang, W.; Wang, B.; Hayik, S.; Roitberg, A.; Seabra, G.; Wong, K. F.; Paesani, F.; Wu, X.; Brozell, S.; Tsui, V.; Gohlke, H.; Yang, L.; Tan, C.; Mongan, J.; Hornak, V.; Cui, G.; Beroza, P.; Mathews, D. H.; Schafmeister, C.; Ross, W. S.; Kollman, P. A. AMBER 9, University of California: San Francisco, 2006.
  27. Kim, K. S.; Tarakeshwar, P.; Lee, J. Y. Chem. Rev. 2000, 100, 4145. https://doi.org/10.1021/cr990051i
  28. Singh, N. J.; Min, S. K.; Kim, D. Y.; Kim, K. S. J. Chem. Theory. Comput. 2009, 5, 515. https://doi.org/10.1021/ct800471b
  29. Kim, K. S.; Lee, J. Y.; Lee, S. J.; Ha, T. K.; Kim, D. H. J. Am. Chem. Soc. 1994, 116, 7399. https://doi.org/10.1021/ja00095a050
  30. Hunter, C. A.; Sanders, J. K. M. J. Am. Chem. Soc. 1990, 112, 5525. https://doi.org/10.1021/ja00170a016
  31. Kim, K. S.; Suh, S. B.; Kim, J. C.; Hong, B. H.; Lee, E. C.; Yun, S.; Tarakeshwar, P.; Lee, J. Y.; Kim, Y.; Ihm, H.; Kim, H. G.; Lee, J. W.; Kim, J. K.; Lee, H. M.; Kim, D.; Cui, C.; Youn, S. J.; Chung, H. Y.; Choi, H. S.; Lee, C.-W.; Cho, S. J.; Cho, J.-H. J. Am. Chem. Soc. 2002, 124, 14268. https://doi.org/10.1021/ja0259786
  32. Lee, E. C.; Hong, B. H.; Lee, J. Y.; Kim, J. C.; Kim, D.; Kim, Y.; Tarakeshwar, P.; Kim, K. S. J. Am. Chem. Soc. 2005, 127, 4530. https://doi.org/10.1021/ja037454r
  33. Lee, E. C.; Kim, D.; Jurecka, P.; Tarakeshwar, P.; Hobza, P.; Kim, K. S. J Phys. Chem. A 2007, 111, 3446. https://doi.org/10.1021/jp068635t

Cited by

  1. enoyl-ACP reductase and implications on drug discovery vol.21, pp.11, 2012, https://doi.org/10.1002/pro.2155
  2. In silico screening for Plasmodium falciparum enoyl-ACP reductase inhibitors vol.29, pp.1, 2015, https://doi.org/10.1007/s10822-014-9806-3