Communications of the Korean Mathematical Society (대한수학회논문집)
- Volume 26 Issue 1
- /
- Pages.79-88
- /
- 2011
- /
- 1225-1763(pISSN)
- /
- 2234-3024(eISSN)
DOI QR Code
ON RANK ONE PERTURBATIONS OF THE UNILATERAL SHIFT
- Ko, Eung-Il (DEPARTMENT OF MATHEMATICS EWHA WOMEN'S UNIVERSITY) ;
- Lee, Ji-Eun (DEPARTMENT OF MATHEMATICS KYUNG HEE UNIVERSITY, INSTITUTE OF MATHEMATICAL SCIENCES EWHA WOMEN'S UNIVERSITY)
- Received : 2009.12.19
- Published : 2011.01.31
Abstract
In this paper we study some properties of rank one perturbations of the unilateral shift operators
File
Acknowledgement
Supported by : Korea Research Foundation
References
- A. Brown, On a class of operators, Proc. Amer. Math. Soc. 4 (1953), 723-728. https://doi.org/10.1090/S0002-9939-1953-0059483-2
- A. Brown and C. Pearcy, Spectra of tensor products of operators, Proc. Amer. Math. Soc. 17 (1966), 162-166. https://doi.org/10.1090/S0002-9939-1966-0188786-5
- G. Cassier and D. Timotin, Power boundedness and similarity to contractions for some perturbations of isometries, J. Math. Anal. Appl. 293 (2004), no. 1, 160-180. https://doi.org/10.1016/j.jmaa.2003.12.020
- J. B. Conway, Subnormal operators, Pitman, London, 1981.
- J. B. Conway, A Course in Functional Analysis, Springer-Verlag, 1985.
- N. Dunford and J. Schwarz, Linear Operators III, John Wiley and Sons, 1971.
- P. R. Halmos, A Hilbert Space Problem Book, Springer-Verlag Berlin Heidelberg New York, 1980.
- E. Ionascu, Rank-one perturbations of diagonal operators, Integral Equations Operator Theory 39 (2001), no. 4, 421-440. https://doi.org/10.1007/BF01203323
- I. Jung, E. Ko, and C. Pearcy, Aluthge transforms of operators, Integral Equations Operator Theory 37 (2000), no. 4, 437-448. https://doi.org/10.1007/BF01192831
- C. Kitai, Invariant closed sets for linear operators, Ph. D. Thesis, Univ. of Toronto, 1982.
- M. Martin and M. Putinar, Lectures on Hyponormal Operators, Operator Theory: Advances and Applications, 39. Birkhauser Verlag, Basel, 1989.
- Y. Nakamura, One-dimensional perturbations of the shift, Integral Equations Operator Theory 17 (1993), no. 3, 373-403. https://doi.org/10.1007/BF01200292
- H. Radjavi and P. Rosenthal, Invariant Subspaces, Springer-Verlag, 1973.
- J. Stampfli, Perturbations of the shift, J. London Math. Soc. 40 (1965), 345-347. https://doi.org/10.1112/jlms/s1-40.1.345
- J. Stampfli, One-dimensional perturbations of operators, Pacific J. Math. 115 (1984), no. 2, 481-491. https://doi.org/10.2140/pjm.1984.115.481