Communications of the Korean Mathematical Society (대한수학회논문집)
- Volume 26 Issue 1
- /
- Pages.67-77
- /
- 2011
- /
- 1225-1763(pISSN)
- /
- 2234-3024(eISSN)
DOI QR Code
SOME EISENSTEIN SERIES IDENTITIES RELATED TO MODULAR EQUATION OF THE FOURTH ORDER
- Srivastava, Bhaskar (DEPARTMENT OF MATHMATICS AND ASTRONOMY LUCKNOW UNIVERSITY)
- Received : 2009.11.17
- Published : 2011.01.31
Abstract
We find some Eisenstein series related to modulus 4 using a theta function identity of McCullough and Shen and residue theorem for elliptic functions.
File
References
- G. E. Andrews and B. C. Berndt, Ramanujan's Lost Notebook. Part I, Springer, New York, 2005.
- G. Gasper and M. Rahman, Basic Hypergeometric Series, Cambridge University Press, Cambridge, 1990.
- Z.-G. Liu, Some Eisenstein series identities, J. Number Theory 85 (2000), no. 2, 231-252. https://doi.org/10.1006/jnth.2000.2543
- Z.-G. Liu, Residue theorem and theta function identities, Ramanujan J. 5 (2001), no. 2, 129-151. https://doi.org/10.1023/A:1011427622187
- Z.-G. Liu, Some theta functions identities associated with the modular equations of degree 5, Integers 1 (2001), A3, 14 pp.
- Z.-G. Liu, Some Eisenstein series identities related to modular equations of the seventh order, Pacific J. Math. 209 (2003), no. 1, 103-130. https://doi.org/10.2140/pjm.2003.209.103
- S. McCullough and L.-C. Shen, On the Szego kernel of an annulus, Proc. Amer. Math. Soc. 121 (1994), no. 4, 1111-1121.
- S. Ramanujan, Collected Papers, Cambridge University Press, Cambridge, 1927.
- E. T. Whittaker and G. N. Watson, A Course of Modern Analysis. An Introduction to the General Theory of Infinite Processes and of Analytic Functions: with an account of the principal transcendental functions, Cambridge University Press, New York 1962.