DOI QR코드

DOI QR Code

COMPOSITE IMPLICIT RANDOM ITERATIONS FOR APPROXIMATING COMMON RANDOM FIXED POINT FOR A FINITE FAMILY OF ASYMPTOTICALLY NONEXPANSIVE RANDOM OPERATORS

  • Received : 2008.09.12
  • Published : 2011.01.31

Abstract

In the present work we construct a composite implicit random iterative process with errors for a finite family of asymptotically nonexpansive random operators and discuss a necessary and sufficient condition for the convergence of this process in an arbitrary real Banach space. It is also proved that this process converges to the common random fixed point of the finite family of asymptotically nonexpansive random operators in the setting of uniformly convex Banach spaces. The present work also generalizes a recently established result in Banach spaces.

Acknowledgement

Supported by : Council of Scientific and Industrial Research(CSIR)

References

  1. I. Beg and M. Abbas, Iterative procedures for solutions of random operator equations in Banach spaces, J. Math. Anal. Appl. 315 (2006), 181-201. https://doi.org/10.1016/j.jmaa.2005.05.073
  2. I. Beg and N. Shahzad, Random fixed point theorems for nonexpansive and contractive-type random operators on Banach spaces, J. Appl. Math. Stochastic Anal. 7 (1994), no.4, 569-580. https://doi.org/10.1155/S1048953394000444
  3. V. Berinde, Iterative Approximation of Fixed Points, Springer Verlag, Berlin, Heidelberg, Newyork, 2007.
  4. B. S. Choudhury, Random Mann iteration scheme, Appl. Math. Lett. 16 (2003), 93-96. https://doi.org/10.1016/S0893-9659(02)00149-0
  5. B. S. Choudhury, Convergence of a random iteration scheme to a random fixed point, J. Appl. Math. Stochastic Anal. 8 (1995), no. 2, 139-142. https://doi.org/10.1155/S104895339500013X
  6. B. S. Choudhury, A common unique fixed point theorem for two random operators in Hilbert spaces, Int. J. Math. Math. Sci. 32 (2002), no. 3, 177-182. https://doi.org/10.1155/S0161171202005616
  7. B. S. Choudhury, A Random Fixed Point Iteration For Three Random Operators On Uniformly Convex Banach Spaces, Analysis in Theory and Application 19 (2003), no. 2, 99-107. https://doi.org/10.1007/BF02835233
  8. B. S. Choudhury, An Iteration For Finding A Common Random Fixed Point, J. Appl. Math. Stochastic Anal. 4 (2004), 385-394.
  9. B. S. Choudhury and A. Upadhyay, An iteration leading to random solutions and fixed points of operators, Soochow J. Math. 25 (1999), no. 4, 395-400.
  10. O. Hans, Random fixed point theorems, Transactions of the 1st Prague Conf. on Information Theory, Statistics, Decision Eunctions and Random Procesess, Czeschosl. Acad. Sci., Prague (1957), pp. 105-125.
  11. C. J. Himmelberg, Measurable relations, Fund. Math. 87 (1975), 53-72. https://doi.org/10.4064/fm-87-1-53-72
  12. S. Itoh, Random Fixed Point Theorems with an Application to Random Differential Equations in Banach Spaces, J. Math. Anal. Appl. 67 (1979), 261-273. https://doi.org/10.1016/0022-247X(79)90023-4
  13. A. R. Khan, A. B. Thaheem, and N. Hussain, Random Fixed Points and Random Approximations in Nonconvex Domains, J. Appl. Math. Stochastic Anal. 15 (2002), no. 3, 263-270.
  14. T. C. Lin, Random Approximations and Random Fixed Point Theorems For Continuous 1-Set-Contractive Random Maps, Proc. Amer. Math. Soc. 123 (1995), no. 4, 1167-1176.
  15. L. S. Liu, Ishikawa and Mann Iterative process with errors for nonlinear atrongly accretive mappings in Banach spaces, J. Math. Anal. Appl. 194 (1995), 114-125. https://doi.org/10.1006/jmaa.1995.1289
  16. D. O'Regan, Random Fixed Point Theory for Multivalued Maps, Stochastic Analysis and Applications 17 (1999), no. 4, 597-607. https://doi.org/10.1080/07362999908809623
  17. S. Plubtieng, P. Kumam, and R.Wangkeeree, Approximation of a common random fixed point for a finite family of random operators, Int. J. Math. Math. Sci. 2007 (2007), Article ID 69626, 12pages, doi:10.1155/2007/69626. https://doi.org/10.1155/2007/69626
  18. B. E. Rhoades, Iteration to obtain random solutions and fixed points of operators in uniformly convex Banach spaces, Soochow J. Math. 27 (2001), no. 4, 401-404.
  19. K. K. Tan and H. K. Xu, Approximating fixed points of nonexpansive mapping by the Ishikawa iteration process, J. Math. Anal. Appl. 178 (1993), 301-308. https://doi.org/10.1006/jmaa.1993.1309
  20. J. Schu, Weak and strong convergence of fixed points of asymptotically nonexpansive mappings, Bull. Austral. Math. Soc. 43 (1991), 153-159. https://doi.org/10.1017/S0004972700028884
  21. A. Spacek, Zuffalige gleichungen, Czech. Math. Jour. (80) (1955), no. 5, 462-466.

Cited by

  1. Approximating common random fixed point for two finite families of asymptotically nonexpansive random mappings vol.22, pp.2, 2014, https://doi.org/10.1016/j.joems.2013.07.010