DOI QR코드

DOI QR Code

Soybean mosaic virus Infection and Helper Component-protease Enhance Accumulation of Bean pod mottle virus-Specific siRNAs

  • Lim, Hyoun-Sub (Department of Applied Biology, Chungnam National University) ;
  • Jang, Chan-Yong (Department of Applied Biology, Chungnam National University) ;
  • Bae, Han-Hong (School of Biotechnology, Yeungnam University) ;
  • Kim, Joon-Ki (Department of Applied Biology, Chungnam National University) ;
  • Lee, Cheol-Ho (Department of Chemical and Biological Engineering, Seokyoung University) ;
  • Hong, Jin-Sung (Institute of Natural Sciences, Seoul Woman's University) ;
  • Ju, Ho-Jong (Department of Agricultural Biology, Chunbuk National University) ;
  • Kim, Hong-Gi (Department of Applied Biology, Chungnam National University) ;
  • Domier, Leslie L. (Department of Crop Sciences, University of Illinois)
  • Received : 2011.08.30
  • Accepted : 2011.10.22
  • Published : 2011.12.01

Abstract

Soybean plants infected with Bean pod mottle virus (BPMV) develop acute symptoms that usually decrease in severity over time. In other plant-virus interactions, this type of symptom recovery has been associated with degradation of viral RNAs by RNA silencing, which is accompanied by the accumulation of virus-derived small interfering RNAs (siRNAs). In this study, changes in the accumulation of BPMV siRNAs were investigated in soybean plants infected with BPMV alone, or infected with both BPMV and Soybean mosaic virus (SMV) and in transgenic soybean plants expressing SMV helper component-protease (HC-Pro). In many potyviruses, HC-Pro is a potent suppressor of RNA silencing. In plants infected with BPMV alone, accumulation of siRNAs was positively correlated with symptom severity and accumulation of BPMV genomic RNAs. Plants infected with both BPMV and SMV and BPMV-infected transgenic soybean plants expressing SMV HC-Pro exhibited severe symptoms characteristic of BPMVSMV synergism, and showed enhanced accumulation of BPMV RNAs and siRNAs compared to plants infected with BPMV alone and nontransgenic plants. Likewise, SMV HC-Pro enhanced the accumulation of siRNAs produced from a silenced green fluorescent protein gene in transient expression assays, while the P19 silencing suppressor of Tomato bushy stunt virus did not. Consistent with the modes of action of HC-Pro in other systems, which have shown that HC-Pro suppresses RNA silencing by preventing the unwinding of duplex siRNAs and inhibiting siRNA methylation, these studies showed that SMV HC-Pro interfered with the activities of RNA-induced silencing complexes, but not the activities of Dicer-like enzymes in antiviral defenses.

Acknowledgement

Supported by : Rural Development Administration

References

  1. Ambros, V., Lee, R. C., Lavanway, A., Williams, P. T. and Jewell, D. 2003. MicroRNAs and other tiny endogenous RNAs in C. elegans. Curr. Biol. 13:807-818. https://doi.org/10.1016/S0960-9822(03)00287-2
  2. Anandalakshmi, R., Pruss, G. J., Ge, X., Marathe, R., Mallory, A. C., Smith, T. H. and Vance, V. B. 1998. A viral suppressor of gene silencing in plants. Proc. Natl. Acad. Sci. USA 95:13079-13084. https://doi.org/10.1073/pnas.95.22.13079
  3. Anjos, J. R., Jarlfors, U. and Ghabrial, S. A. 1992. Soybean mosaic potyvirus enhances the titer of two comoviruses in dually infected soybean plants. Phytopathology 82:1022-1027. https://doi.org/10.1094/Phyto-82-1022
  4. Ballut, L., Drucker, M., Pugniere, M., Cambon, F., Blanc, S., Roquet, F., Candresse, T., Schmid, H. P., Nicolas, P., Gall, O. L. and Badaoui, S. 2005. HC-Pro, a multifunctional protein encoded by a plant RNA virus, targets the 20S proteasome and affects its enzymic activities. J. Gen. Virol. 86:2595-2603. https://doi.org/10.1099/vir.0.81107-0
  5. Baulcombe, D. 2005. RNA silencing. Trends Biochem. Sci. 30:290-293. https://doi.org/10.1016/j.tibs.2005.04.012
  6. Bayne, E. H., Rakitina, D. V., Morozov, S. Y. and Baulcombe, D. C. 2005. Cell-to-cell movement of Potato Potexvirus X is dependent on suppression of RNA silencing. Plant J. 44:471-482. https://doi.org/10.1111/j.1365-313X.2005.02539.x
  7. Bernstein, E., Caudy, A. A., Hammond, S. M. and Hannon, G. J. 2001. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409:363-366. https://doi.org/10.1038/35053110
  8. Blevins, T., Rajeswaran, R., Shivaprasad, P. V., Beknazariants, D., Si-Ammour, A., Park, H. S., Vazquez, F., Robertson, D., Meins, F., Jr., Hohn, T. and Pooggin, M. M. 2006. Four plant Dicers mediate viral small RNA biogenesis and DNA virus induced silencing. Nucleic Acids Res. 34:6233-6246. https://doi.org/10.1093/nar/gkl886
  9. Burgyan, J. and Havelda, Z. 2011. Viral suppressors of RNA silencing. Trends Plant Sci. 16:265-272. https://doi.org/10.1016/j.tplants.2011.02.010
  10. Calvert, L. A. and Ghabrial, S. A. 1983. Enhancement by soybean mosaic virus of bean pod mottle virus titer in doubly infected soybean Glycine max. Phytopathology 73:992-997. https://doi.org/10.1094/Phyto-73-992
  11. Chapman, E. J., Prokhnevsky, A. I., Gopinath, K., Dolja, V. V. and Carrington, J. C. 2004. Viral RNA silencing suppressors inhibit the microRNA pathway at an intermediate step. Genes Dev. 18:1179-1186. https://doi.org/10.1101/gad.1201204
  12. Chellappan, P., Vanitharani, R. and Fauquet, C. M. 2004. Short interfering RNA accumulation correlates with host recovery in DNA virus-infected hosts, and gene silencing targets specific viral sequences. J. Virol. 78:7465-7477. https://doi.org/10.1128/JVI.78.14.7465-7477.2004
  13. Davis, S. J. and Vierstra, R. D. 1998. Soluble, highly fluorescent variants of green fluorescent protein (GFP) for use in higher plants. Plant Mol. Biol. 36:521-528. https://doi.org/10.1023/A:1005991617182
  14. Dielen, A. S., Badaoui, S., Candresse, T. and German-Retana, S. 2010. The ubiquitin/26S proteasome system in plant-pathogen interactions: a never-ending hide-and-seek game. Mol. Plant Pathol. 11:293-308. https://doi.org/10.1111/j.1364-3703.2009.00596.x
  15. Giesler, L. J., Ghabrial, S. A., Hunt, T. G. and Hill, J. H. 2002. Bean pod mottle virus: a threat to U.S. soybean production. Plant Dis. 86:1280-1289. https://doi.org/10.1094/PDIS.2002.86.12.1280
  16. Goto, K., Kanazawa, A., Kusaba, M. and Masuta, C. 2003. A simple and rapid method to detect plant siRNAs using nonradioactive probes. Plant Mol. Biol. Rep. 21:51-58. https://doi.org/10.1007/BF02773396
  17. Gu, H. and Ghabrial, S. A. 2005. The Bean pod mottle virus proteinase cofactor and putative helicase are symptom severity determinants. Virology 333:271-283. https://doi.org/10.1016/j.virol.2005.01.020
  18. Hagen, C., Rojas, M. R., Kon, T. and Gilbertson, R. L. 2008. Recovery from Cucurbit leaf crumple virus (Family Geminiviridae, genus Begomovirus) infection is an adaptive antiviral response associated with changes in viral small RNAs. Phytopathology 98:1029-1037. https://doi.org/10.1094/PHYTO-98-9-1029
  19. Hamilton, A. J. and Baulcombe, D. C. 1999. A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286:950-952. https://doi.org/10.1126/science.286.5441.950
  20. Hammond, S. M., Bernstein, E., Beach, D. and Hannon, G. J. 2000. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404:293-296. https://doi.org/10.1038/35005107
  21. Harrison, B. D. and Robinson, D. J. 2005. Another quarter century of great progress in understanding the biological properties of plant viruses. Ann. Appl. Biol. 146:15-37. https://doi.org/10.1111/j.1744-7348.2005.04111.x
  22. Hunter, C. and Poethig, R. S. 2003. miSSING LINKS: miRNAs and plant development. Curr. Opin. Genet. Dev. 13:372-378. https://doi.org/10.1016/S0959-437X(03)00081-9
  23. Jin, Y., Ma, D., Dong, J., Jin, J., Li, D., Deng, C. and Wang, T. 2007. HC-Pro protein of Potato virus Y can interact with three Arabidopsis 20S proteasome subunits in planta. J. Virol. 81:12881-12888. https://doi.org/10.1128/JVI.00913-07
  24. Johansen, L. K. and Carrington, J. C. 2001. Silencing on the spot. Induction and suppression of RNA silencing in the Agrobacterium- mediated transient expression system. Plant Physiol. 126:930-938. https://doi.org/10.1104/pp.126.3.930
  25. Kartaatmadja, S. and Sehgal, O. P. 1990. Decline of bean pod mottle virus specific infectivity in vivo correlates with degradation of encapsidated RNA-1. Phytopathology 80:1182-1189. https://doi.org/10.1094/Phyto-80-1182
  26. Kasschau, K. D. and Carrington, J. C. 1998. A counterdefensive strategy of plant viruses: suppression of posttranscriptional gene silencing. Cell 95:461-470. https://doi.org/10.1016/S0092-8674(00)81614-1
  27. Kubota, K., Tsuda, S., Tamai, A. and Meshi, T. 2003. Tomato mosaic virus replication protein suppresses virus-targeted posttranscriptional gene silencing. J. Virol. 77:11016-11026. https://doi.org/10.1128/JVI.77.20.11016-11026.2003
  28. Lakatos, L., Csorba, T., Pantaleo, V., Chapman, E. J., Carrington, J. C., Liu, Y. P., Dolja, V. V., Calvino, L. F., Lopez-Moya, J. J. and Burgyan, J. 2006. Small RNA binding is a common strategy to suppress RNA silencing by several viral suppressors. EMBO J. 25:2768-2780. https://doi.org/10.1038/sj.emboj.7601164
  29. Lim, H. S., Ko, T. S., Hobbs, H. A., Lambert, K. N., Yu, J. M., McCoppin, N. K., Korban, S. S., Hartman, G. L. and Domier, L. L. 2007. Soybean mosaic virus helper component-protease alters leaf morphology and reduces seed production in transgenic soybean plants. Phytopathology 97:366-372. https://doi.org/10.1094/PHYTO-97-3-0366
  30. Lim, H. S., Ko, T. S., Lambert, K. N., Kim, H. G., Korban, S. S., Hartman, G. L. and Domier, L. L. 2005. Soybean mosaic virus helper component-protease enhances somatic embryo production and stabilizes transgene expression in soybean. Plant Physiol. Biochem. 43:1014-1021. https://doi.org/10.1016/j.plaphy.2005.08.012
  31. Lim, H. S., Vaira, A. M., Reinsel, M. D., Baer, H., Bailey, B. A., Domier, L. L. and Hammond, J. 2010. Pathogenicity of Alternanthera mosaic virus is affected by determinants in RNAdependent RNA polymerase and by reduced efficacy of silencing suppression in a movement-competent TGB1. J. Gen. Virol. 91:277-287. https://doi.org/10.1099/vir.0.014977-0
  32. Llave, C., Kasschau, K. D. and Carrington, J. C. 2000. Virusencoded suppressor of posttranscriptional gene silencing targets a maintenance step in the silencing pathway. Proc. Natl. Acad. Sci. USA 97:13401-13406. https://doi.org/10.1073/pnas.230334397
  33. Mallory, A. C., Ely, L., Smith, T. H., Marathe, R., Anandalakshmi, R., Fagard, M., Vaucheret, H., Pruss, G., Bowman, L. and Vance, V. B. 2001. HC-Pro suppression of transgene silencing eliminates the small RNAs but not transgene methylation or the mobile signal. Plant Cell 13:571-583. https://doi.org/10.1105/tpc.13.3.571
  34. Mallory, A. C., Mlotshwa, S., Bowman, L. H. and Vance, V. B. 2003. The capacity of transgenic tobacco to send a systemic RNA silencing signal depends on the nature of the inducing transgene locus. Plant J. 35:82-92. https://doi.org/10.1046/j.1365-313X.2003.01785.x
  35. Mallory, A. C., Reinhart, B. J., Bartel, D., Vance, V. B. and Bowman, L. H. 2002. A viral suppressor of RNA silencing differentially regulates the accumulation of short interfering RNAs and micro-RNAs in tobacco. Proc. Natl. Acad. Sci. USA 99:15228-15233. https://doi.org/10.1073/pnas.232434999
  36. Markarian, N., Li, H. W., Ding, S. W. and Semancik, J. S. 2004. RNA silencing as related to viroid induced symptom expression. Arch. Virol. 149:397-406. https://doi.org/10.1007/s00705-003-0215-5
  37. Moore, C. J., Sutherland, P. W., Forster, R. L. S., Gardner, R. C. and MacDiarmid, R. M. 2001. Dark green islands in plant virus infection are the result of posttranscriptional gene silencing. Mol. Plant-Microbe Interact. 14:939-946. https://doi.org/10.1094/MPMI.2001.14.8.939
  38. Pickford, A. S. and Cogoni, C. 2003. RNA-mediated gene silencing. Cell. Mol. Life Sci. 60:871-882. https://doi.org/10.1007/s00018-003-2245-2
  39. Pruss, G., Ge, X., Shi, X. M., Carrington, J. C. and Bowman Vance, V. 1997. Plant viral synergism: the potyviral genome encodes a broad-range pathogenicity enhancer that transactivates replication of heterologous viruses. Plant Cell 9:859-868. https://doi.org/10.1105/tpc.9.6.859
  40. Ross, J. P. 1968. Effect of single and double infections of soybean mosaic and bean pod mottle viruses on soybean yield and seed characters. Plant Dis. Rep. 52:344-348.
  41. Roth, B. M., Pruss, G. J. and Vance, V. B. 2004. Plant viral suppressors of RNA silencing. Virus Res. 102:97-108. https://doi.org/10.1016/j.virusres.2004.01.020
  42. Savenkov, E. I. and Valkonen, J. P. 2001. Potyviral helper-component proteinase expressed in transgenic plants enhances titers of Potato leaf roll virus but does not alleviate its phloem limitation. Virology 283:285-293. https://doi.org/10.1006/viro.2000.0838
  43. Shiboleth, Y. M., Haronsky, E., Leibman, D., Arazi, T., Wassenegger, M., Whitham, S. A., Gaba, V. and Gal-On, A. 2007. The conserved FRNK box in HC-Pro, a plant viral suppressor of gene silencing, is required for small RNA binding and mediates symptom development. J. Virol. 81:13135-13148. https://doi.org/10.1128/JVI.01031-07
  44. Silhavy, D. and Burgyan, J. 2004. Effects and side-effects of viral RNA silencing suppressors on short RNAs. Trends Plant Sci 9:76-83. https://doi.org/10.1016/j.tplants.2003.12.010
  45. Silhavy, D., Merai, Z., Kerenyi, Z., Kertesz, S., Magna, M. and Lakatos, L. 2006. Double-stranded RNA binding may be a general plant RNA viral strategy to suppress RNA silencing. J. Virol. 80:5747-5756. https://doi.org/10.1128/JVI.01963-05
  46. Silhavy, D., Molnar, A., Lucioli, A., Szittya, G., Hornyik, C., Tavazza, M. and Burgyan, J. 2002. A viral protein suppresses RNA silencing and binds silencing-generated, 21- to 25-nucleotide double-stranded RNAs. EMBO J. 21:3070-3080. https://doi.org/10.1093/emboj/cdf312
  47. Tenllado, F. and Diaz-Ruiz, J. R. 2001. Double-stranded RNAmediated interference with plant virus infection. J. Virol. 75:12288-12297. https://doi.org/10.1128/JVI.75.24.12288-12297.2001
  48. Tijsterman, M., Ketting, R. F. and Plasterk, R. H. 2002. The genetics of RNA silencing. Annu. Rev. Genet. 36:489-519. https://doi.org/10.1146/annurev.genet.36.043002.091619
  49. Torres-Barceló, C., Martin, S., Daros, J. A. and Elena, S. F. 2008. From hypo- to hypersuppression: effect of amino acid substitutions on the RNA-silencing suppressor activity of the Tobacco etch potyvirus HC-Pro. Genetics 180:1039-1049. https://doi.org/10.1534/genetics.108.091363
  50. Van den Boogaart, T., Maule, A. J., Davies, J. W. and Lomonossoff, G. P. 2004. Sources of target specificity associated with the recovery against Pea seed-borne mosaic virus infection mediated by RNA silencing in pea. Mol. Plant Pathol. 5:37-43. https://doi.org/10.1111/j.1364-3703.2004.00204.x
  51. Varrelmann, M., Maiss, E., Pilot, R. and Palkovics, L. 2007. Use of pentapeptide-insertion scanning mutagenesis for functional mapping of the plum pox virus helper component proteinase suppressor of gene silencing. J. Gen. Virol. 88:1005-1015. https://doi.org/10.1099/vir.0.82200-0
  52. Voinnet, O. 2001. RNA silencing as a plant immune system against viruses. Trends Genet. 17:449-459. https://doi.org/10.1016/S0168-9525(01)02367-8
  53. Wang, M. B. and Metzlaff, M. 2005. RNA silencing and antiviral defense in plants. Curr. Opin. Plant Biol. 8:216-222. https://doi.org/10.1016/j.pbi.2005.01.006
  54. Wu, H. W., Lin, S. S., Chen, K. C., Yeh, S. D. and Chua, N. H. 2010. Discriminating mutations of HC-Pro of Zucchini yellow mosaic virus with differential effects on small RNA pathways involved in viral pathogenicity and symptom development. Mol. Plant-Microbe Interact. 23:17-28. https://doi.org/10.1094/MPMI-23-1-0017
  55. Xie, Z., Johansen, L. K., Gustafson, A. M., Kasschau, K. D., Lellis, A. D., Zilberman, D., Jacobsen, S. E. and Carrington, J. C. 2004. Genetic and functional diversification of small RNA pathways in plants. PLoS. Biol. 2:E104. https://doi.org/10.1371/journal.pbio.0020104
  56. Yu, B., Chapman, E. J., Yang, Z., Carrington, J. C. and Chen, X. 2006. Transgenically expressed viral RNA silencing suppressors interfere with microRNA methylation in Arabidopsis. FEBS Lett. 580:3117-3120. https://doi.org/10.1016/j.febslet.2006.04.063
  57. Zamore, P. D., Tuschl, T., Sharp, P. A. and Bartel, D. P. 2000. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101:25-33. https://doi.org/10.1016/S0092-8674(00)80620-0
  58. Zhang, C. and Ghabrial, S. A. 2006. Development of Bean pod mottle virus-based vectors for stable protein expression and sequence-specific virus-induced gene silencing in soybean. Virology 344:401-411. https://doi.org/10.1016/j.virol.2005.08.046

Cited by

  1. Sequence variability in the HC-Pro coding regions of Korean soybean mosaic virus isolates is associated with differences in RNA silencing suppression vol.159, pp.6, 2014, https://doi.org/10.1007/s00705-013-1964-4
  2. Effects of single and mixed infections ofBean pod mottle virusandSoybean mosaic viruson host-plant chemistry and host-vector interactions vol.30, pp.10, 2016, https://doi.org/10.1111/1365-2435.12649
  3. Novel Endorna-like viruses, including three with two open reading frames, challenge the membership criteria and taxonomy of the Endornaviridae vol.499, 2016, https://doi.org/10.1016/j.virol.2016.08.019
  4. Seed Transmission Rates of Bean pod mottle virus and Soybean mosaic virus in Soybean May Be Affected by Mixed Infection or Expression of the Kunitz Trypsin Inhibitor vol.19, pp.2, 2013, https://doi.org/10.5423/RPD.2013.19.2.114
  5. Survey of Viruses Present in Radish Fields in 2014 vol.21, pp.3, 2015, https://doi.org/10.5423/RPD.2015.21.3.235
  6. Using decoys to expand the recognition specificity of a plant disease resistance protein vol.351, pp.6274, 2016, https://doi.org/10.1126/science.aad3436