Seismic Velocity Change Due to Micro-crack Accumulation of Rock Samples from Seokmo Island, Korea

손상 진행에 따른 석모도 암석 시험편의 탄성파속도 변화

  • Lee, Sang-Kyu (Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Choi, Ji-Hyang (Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Cheon, Dae-Sung (Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Lee, Tae-Jong (Korea Institute of Geoscience and Mineral Resources (KIGAM))
  • Received : 2011.11.01
  • Accepted : 2011.11.21
  • Published : 2011.11.30


Seismic wave velocity change has been monitored due to the accumulation of micro-cracks by uniaxial loads on the rock samples from Seokmo Island with stepwise increase in 5 stages. After the load was applied up to 95% of UCS, P- and S-wave velocities varied in ranges of 0.9 ~ 18.3% and 2.8 ~ 14.8% of fresh rock sample velocities, respectively. Unlike seismic velocity of the dry rock samples that showed overall decreases after the loading, velocity changes of saturated rock samples were much more complicated. These seemed to be due to the mixture of two contradictory mechanisms; i.e. accumulation of micro-crack causes an increase in porosity and a decrease in wave velocity, while saturation causes an increase in wave velocity. Most of tested rocks showed a trend of velocity increase with low axial load and then velocity decrease at later stages. Starting stage of velocity decrease differs from samples to samples. After the failure of rock occurred, noticeable increases of porosity and decreases of wave velocity have been observed. It showed overall trend that the more the quartz contents and the lower the silicate, the higher the Young's modulus.


Supported by : 한국에너지기술평가원(KETEP)


  1. 김영화, 장보안, 문병관, 김재동, 이찬구, 1997, 화강암 석재시료에서의 압축피로하중시험과 P파 속도의 변화 특성, 1997 대한지질공학회 학술발표회, 17-23.
  2. 손치무, 윤석규, 1978, 광물학 개론, 박영사, 302.
  3. 윤운상, 송윤호, 이태종, 김광염, 민기복, 조용희, 전종욱, 2011, MW급 EGS 지열발전 사용화 기술개발사업의 추진 배경 및 계획, 터널과지하공간, 21(1), 11-19.
  4. 이상규, 이태종, 성낙훈, 2010, "자동.연속 측정장치를 이용한 석모도 지표 암석의 탄성파 속도 특성 분석", 한국지구시스템공학회지, 47(5), 756-770.
  5. 이상규, 이태종, 2011a, 시편의 중량 측정이 가능한 건조장치 및 이를 이용한 공극률 계측방법, 대한민국특허 제10-1057142호.
  6. 이상규, 이태종, 2011b, 아크릴 및 스테인리스강 시험편의 P-, S-파 속도 산출에 미친 영향 요인 고찰, 지구물리와 물리탐사, 14(4), 305-315.
  7. 장수호, 2002, 응력수준에 따른 암석의 손상특성과 심부터널 주변 암반 손상영역의 해석, 공학박사학위논문, 서울대학교.
  8. 천대성, 박의섭, 박철환, 박찬, 2008, 국내 암석의 역학적 특성 분석과 DB구축을 위한 기본연구, 터널과 지하공간, 18(5), 317-327.
  9. Asanuma, H., Nozaki, H., Niitsuma, H., and Wyborn, D., 2005, Interpretation of microseismic events with larger magnitude collected at cooper basin, Australia, GRC Trans., 29, 87-91.
  10. ASTM/D 2938, 1986, Standard test method for unconfined compressive strength of intact rock core specimens.
  11. ASTM/D 3148, 1986, Standard test method for elastic moduli of rock core specimen in uniaxial compression.
  12. Eberhardt, E., Stead, D., Stimpson, B., and Read, R. S., 1998, Identifying crack initiation and propagation thresholds in brittle rock, Can. Geotech. J., 35, 222-233.
  13. Nami, P., Schellschmidt, R., Schindler, M., and Tischner, T., 2008, Chemical stimulation operations for reservoir development of the deep crystalline HDR/EGS system at Soultz-sous-Forêts (France), Proceedings of Thirty-Third Workshop on Geothermal Reservoir Engineering, Stanford Univ., Jan. 28-30, SGP-TR-185.
  14. Tester et al., 2006, The future of geothermal energy - Impact of Enhanced Geothermal Systems (EGS) on the United Statesin the 21st century, Messachusetts Institute of Technology, (Nov. 10, 2011).