DOI QR코드

DOI QR Code

Adjuvant effect of liposome-encapsulated natural phosphodiester CpG-DNA

  • Kim, Dong-Bum (Department of Microbiology, College of Medicine, Hallym University) ;
  • Kwon, Sang-Hoon (Center for Medical Science Research, College of Medicine, Hallym University) ;
  • Ahn, Chi-Seok (Motaean Women's Hospital) ;
  • Lee, Young-Hee (Department of Biochemistry, College of Natural Sciences, Chungbuk National University) ;
  • Choi, Soo-Young (Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, College of Medicine, Hallym University) ;
  • Park, Jin-Seu (Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, College of Medicine, Hallym University) ;
  • Kwon, Hyeok-Yil (Department of Physiology, College of Medicine, Hallym University) ;
  • Kwon, Hyung-Joo (Department of Microbiology, College of Medicine, Hallym University)
  • Received : 2011.06.29
  • Accepted : 2011.07.30
  • Published : 2011.11.30

Abstract

Immunostimulatory CpG-DNA targeting TLR9 is one of the most extensively evaluated vaccine adjuvants. Previously, we found that a particular form of natural phosphodiester bond CpG-DNA (PO-ODN) encapsulated in a phosphatidyl-${\beta}$-oleoyl-${\gamma}$-palmitoyl ethanolamine (DOPE) : cholesterol hemisuccinate (CHEMS) (1 : 1 ratio) complex (Lipoplex(O)) is a potent adjuvant. Complexes containing peptide and Lipoplex(O) are extremely useful for B cell epitope screening and antibody production without carriers. Here, we showed that IL-12 production was increased in bone marrow derived dendritic cells in a CpG sequence-dependent manner when PO-ODN was encapsulated in Lipoplex(O), DOTAP or lipofectamine. However, the effects of Lipoplex(O) surpassed those of PO-ODN encapsulated in DOTAP or lipofectamine and also other various forms of liposome-encapsulated CpG-DNA in terms of potency for protein antigen-specific IgG production and Th1- associated IgG2a production. Therefore, Lipoplex(O) may have a unique potent immunoadjuvant activity which can be useful for various applications involving protein antigens as well as peptides.

Keywords

Adjuvants;CpG-DNA;DCs;Lipoplex(O);PO-ODN

Acknowledgement

Supported by : National Research Foundation

References

  1. Glenny, A., Pope, C., Waddington, H. and Wallace, U. (1926) The antigenic value of toxoid precipitated by potassium alum. J. Pathol. Bacteriol. 29, 38-45.
  2. Marrack, P., McKee, A. S. and Munks, M. W. (2009) Towards an understanding of the adjuvant action of aluminium. Nat. Rev. Immunol. 9, 287-293. https://doi.org/10.1038/nri2510
  3. Spreafico, R., Ricciardi-Castagnoli, P. and Mortellaro, A. (2010) The controversial relationship between NLRP3, alum, danger signals and the next-generation adjuvants. Eur. J. Immunol. 40, 638-642. https://doi.org/10.1002/eji.200940039
  4. Felnerova, D., Viret, J. F., Gluck, R. and Moser, C. (2004) Liposomes and virosomes as delivery system for antigens, nucleic acids and drugs. Curr. Opin. Biotechnol. 15, 518-529. https://doi.org/10.1016/j.copbio.2004.10.005
  5. Simoes, S., Moreira, J. N., Fonseca, C., Duzgunes, N. and de Lima, M. C. (2004) On the formulation of pH-sensitive liposomes with long circulation times. Adv. Drug Deliv. Rev. 56, 947-965. https://doi.org/10.1016/j.addr.2003.10.038
  6. Chikh, G. and Schutze-Redelmeier, M. P. (2002) Liposomal delivery of CTL epitopes to dendritic cells. Biosci. Rep. 22, 339-353. https://doi.org/10.1023/A:1020151025412
  7. Henriksen-Lacey, M., Korsholm, K. S., Andersen, P., Perrie, Y. and Christensen, D. (2011) Liposomal vaccine delivery systems. Expert. Opin. Drug Deliv. 8, 505-519. https://doi.org/10.1517/17425247.2011.558081
  8. Gursel, I., Gursel, M., Ishii, K. J. and Klinman, D. M. (2001) Sterically stabilized cationic liposomes improve the uptake and immunostimulatory activity of CpG oligonucleotides. J. Immunol. 167, 3324-3328. https://doi.org/10.4049/jimmunol.167.6.3324
  9. Alving, C. R., Koulchin, V., Glenn, G. M. and Rao, M. (1995) Liposomes as carriers of peptide antigens: induction of antibodies and cytotoxic T lymphocytes to conjugated and unconjugated peptides. Immunol. Rev. 145, 5-31. https://doi.org/10.1111/j.1600-065X.1995.tb00075.x
  10. Chang, J. S., Choi, M. J., Cheong, H. S. and Kim, K. (2001) Development of Th1-mediated CD8+ effector T cells by vaccination with epitope peptides encapsulated in pH-sensitive liposomes. Vaccine 19, 3608-3614. https://doi.org/10.1016/S0264-410X(01)00104-9
  11. Brunel, F., Darbouret, A. and Ronco, J. (1999) Cationic lipid DC-Chol induces an improved and balanced immunity able to overcome the unresponsiveness to the hepatitis B vaccine. Vaccine 17, 2192-2203. https://doi.org/10.1016/S0264-410X(98)00492-7
  12. Zheng, L., Huang, X. L., Fan, Z., Borowski, L., Wilson, C. C. and Rinaldo, C. R. Jr. (1999) Delivery of liposome-encapsulated HIV type 1 proteins to human dendritic cells for stimulation of HIV type 1-specific memory cytotoxic T lymphocyte responses. AIDS Res. Hum. Retroviruses 15, 1011-1020. https://doi.org/10.1089/088922299310520
  13. Klinman, D. M., Currie, D., Gursel, I. and Verthelyi, D. (2004) Use of CpG oligodeoxynucleotides as immune adjuvants. Immunol. Rev. 199, 201-216. https://doi.org/10.1111/j.0105-2896.2004.00148.x
  14. Chu, R. S., Targoni, O. S., Krieg, A. M., Lehmann, P. V. and Harding, C. V. (1997) CpG oligodeoxynucleotides act as adjuvants that switch on T helper 1 (Th1) immunity. J. Exp. Med. 186, 1623-1631. https://doi.org/10.1084/jem.186.10.1623
  15. Carson, D. A. and Raz, E. (1997) Oligonucleotide adjuvants for T helper 1 (Th1)-specific vaccination. J. Exp. Med. 186, 1621-1622. https://doi.org/10.1084/jem.186.10.1621
  16. Lay, M., Callejo, B., Chang, S., Hong, D. K., Lewis, D. B., Carroll, T. D., Matzinger, S., Fritts, L., Miller, C. J., Warner, J. F., Liang, L. and Fairman, J. (2009) Cationic lipid/DNA complexes (JVRS-100) combined with influenza vaccine (Fluzone) increases antibody response, cellular immunity, and antigenically drifted protection. Vaccine 27, 3811-3820. https://doi.org/10.1016/j.vaccine.2009.04.054
  17. Suzuki, Y., Wakita, D., Chamoto, K., Narita, Y., Tsuji, T., Takeshima, T., Gyobu, H., Kawarada, Y., Kondo, S., Akira, S., Katoh, H., Ikeda, H. and Nishimura, T. (2004) Liposome-encapsulated CpG oligodeoxynucleotides as a potent adjuvant for inducing type 1 innate immunity. Cancer Res. 64, 8754-8760. https://doi.org/10.1158/0008-5472.CAN-04-1691
  18. Li, W. M., Dragowska, W. H., Bally, M. B. and Schutze-Redelmeier, M. P. (2003) Effective induction of CD8+ T-cell response using CpG oligodeoxynucleotides and HER-2/neuderived peptide co-encapsulated in liposomes. Vaccine 21, 3319-3329. https://doi.org/10.1016/S0264-410X(03)00172-5
  19. Choi, Y. J., Lee, K. W., Kwon, H. J. and Kim, D. S. (2006) Identification of immunostimulatory oligodeoxynucleotide from Escherichia coli genomic DNA. J. Biochem. Mol. Biol. 39, 788-793. https://doi.org/10.5483/BMBRep.2006.39.6.788
  20. Lee, K. W., Jung, J., Lee, Y., Kim, T. Y., Choi, S. Y., Park, J., Kim, D. S. and Kwon, H. J. (2006) Immunostimulatory oligodeoxynucleotide isolated from genome wide screening of Mycobacterium bovis chromosomal DNA. Mol. Immunol. 43, 2107-2118. https://doi.org/10.1016/j.molimm.2005.12.004
  21. Kim, D., Rhee, J. W., Kwon, S., Sohn, W. J., Lee, Y., Kim, D. W., Kim, D. S. and Kwon, H. J. (2009) Immunostimulation and anti-DNA antibody production by backbone modified CpG-DNA. Biochem. Biophys. Res. Commun. 379, 362-367. https://doi.org/10.1016/j.bbrc.2008.12.063
  22. Kim, D., Kwon, S., Rhee, J. W., Kim, K. D., Kim, Y. E, Park C. S., Choi, M. J., Suh, J. G., Kim, D. S., Lee, Y. and Kwon, H. J. (2011) Production of antibodies with peptide-CpGDNA-liposome complex without carriers. BMC Immunol. 12, 29. https://doi.org/10.1186/1471-2172-12-29
  23. Ben-Yedidia, T and Arnon, R. (1997) Design of peptide and polypeptide vaccines. Curr. Opin. Biotechnol. 8, 442-448. https://doi.org/10.1016/S0958-1669(97)80066-3
  24. Bijker, M. S., Melief, C. J., Offringa, R. and van der Burg, S. H. (2007) Design and development of synthetic peptide vaccines: past, present and future. Expert Rev. Vaccines 6, 591-603. https://doi.org/10.1586/14760584.6.4.591
  25. Castilow, E. M., Olson, M. R. and Varga, S. M. (2007) Understanding respiratory syncytial virus (RSV) vaccine-enhanced disease. Immunol. Res. 39, 225-239. https://doi.org/10.1007/s12026-007-0071-6
  26. Reed, S. G., Bertholet, S., Coler, R. N. and Friede, M. (2009) New horizons in adjuvants for vaccine development. Trends Immunol. 30, 23-32. https://doi.org/10.1016/j.it.2008.09.006
  27. Lipford, G. B., Sparwasser, T., Zimmermann, S., Heeg, K. and Wagner, H. (2000) CpG-DNA-mediated transient lymphadenopathy is associated with a state of Th1 predisposition to antigen-driven responses. J. Immunol. 165, 1228-1235. https://doi.org/10.4049/jimmunol.165.3.1228
  28. Heikenwalder, M., Polymenidou, M., Junt, T., Sigurdson, C., Wagner, H., Akira, S., Zinkernagel, R. and Aguzzi, A. (2004) Lymphoid follicle destruction and immunosuppression after repeated CpG oligodeoxynucleotide administration. Nat. Med. 10, 187-192. https://doi.org/10.1038/nm987
  29. Deng, G. M., Nilsson, I. M., Verdrengh, M., Collins, L. V. and Tarkowski, A. (1999) Intra-articularly localized bacterial DNA containing CpG motifs induces arthritis. Nat. Med. 5, 702-705. https://doi.org/10.1038/9554
  30. Gregoriadis, G., Saffie, R. and Hart, S. L. (1996) High yield incorporation of plasmid DNA within liposomes: Effect on DNA integrity and transfection efficiency. J. Drug Target. 3, 469-475. https://doi.org/10.3109/10611869609015966
  31. Lutz, M. B., Schnare, M., Menges, M., Rossner, S., Rollinghoff, M., Schuler, G. and Gessner, A. (2002) Differential functions of IL-4 receptor types I and II for dendritic cell maturation and IL-12 production and their dependency on GM-CSF. J. Immunol. 169, 3574-3580. https://doi.org/10.4049/jimmunol.169.7.3574
  32. Kim, D., Jung, J., Lee, Y. and Kwon, H. J. (2011) Novel immunostimulatory phosphodiester oligodeoxynucleotides with CpT sequences instead of CpG motifs. Mol. Immunol. 48, 1494-1504. https://doi.org/10.1016/j.molimm.2011.04.009

Cited by

  1. Therapeutic effect of a TM4SF5-specific peptide vaccine against colon cancer in a mouse model vol.47, pp.4, 2014, https://doi.org/10.5483/BMBRep.2014.47.4.157
  2. CD83 expression induced by CpG-DNA stimulation in a macrophage cell line RAW 264.7 vol.46, pp.9, 2013, https://doi.org/10.5483/BMBRep.2013.46.9.023
  3. Transcutaneous antigen delivery system vol.46, pp.1, 2013, https://doi.org/10.5483/BMBRep.2013.46.1.001
  4. Monoclonal Antibodies Against the Human Respiratory Syncytial Virus Obtained by Immunization with Epitope Peptides and CpG-DNA-liposome Complex vol.34, pp.2, 2015, https://doi.org/10.1089/mab.2014.0089
  5. Effects of KLK Peptide on Adjuvanticity of Different ODN Sequences vol.4, pp.2, 2016, https://doi.org/10.3390/vaccines4020014
  6. Evaluation of the protective immune response induced in mice by immunization with Schistosoma mansoni schistosomula tegument (Smteg) in association with CpG-ODN vol.15, pp.1, 2013, https://doi.org/10.1016/j.micinf.2012.10.007
  7. Induction of immunological memory response by vaccination with TM4SF5 epitope-CpG-DNA-liposome complex in a mouse hepatocellular carcinoma model vol.29, pp.2, 2013, https://doi.org/10.3892/or.2012.2130
  8. A Monoclonal Antibody Against the Human SUMO-1 Protein Obtained by Immunization with Recombinant Protein and CpG-DNA-liposome Complex vol.32, pp.5, 2013, https://doi.org/10.1089/mab.2013.0040
  9. Effect of a monoclonal antibody against human relaxin-2 on cancer cell growth inhibition vol.59, pp.5, 2016, https://doi.org/10.1007/s13765-016-0221-4
  10. Effect of epitope-CpG-DNA-liposome complex without carriers on vaccination of respiratory syncytial virus infection vol.57, pp.5, 2014, https://doi.org/10.1007/s13765-014-4215-9