DOI QR코드

DOI QR Code

Linkage and association scan for tanning ability in an isolated Mongolian population

  • Paik, Seung-Hwan (Department of Dermatology, Seoul National University College of Medicine) ;
  • Kim, Hyun-Jin (Genomic Medicine Institute (GMI), Medical Research Center, Seoul National University) ;
  • Lee, Seung-Bok (Genomic Medicine Institute (GMI), Medical Research Center, Seoul National University) ;
  • Im, Sun-Wha (Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine) ;
  • Ju, Young-Seok (Genomic Medicine Institute (GMI), Medical Research Center, Seoul National University) ;
  • Yeon, Je-Ho (Department of Dermatology, Seoul National University College of Medicine) ;
  • Jo, Seong-Jin (Department of Dermatology, Seoul National University College of Medicine) ;
  • Eun, Hee-Chul (Department of Dermatology, Seoul National University College of Medicine) ;
  • Seo, Jeong-Sun (Genomic Medicine Institute (GMI), Medical Research Center, Seoul National University) ;
  • Kim, Jong-Il (Genomic Medicine Institute (GMI), Medical Research Center, Seoul National University) ;
  • Kwon, Oh-Sang (Department of Dermatology, Seoul National University College of Medicine)
  • Received : 2011.02.28
  • Accepted : 2011.07.12
  • Published : 2011.11.30

Abstract

Tanning ability is important, because it represents the ability of the skin to protect itself against ultraviolet (UV) radiation. Here, we sought to determine genetic regions associated with tanning ability. Skin pigmentation was measured at the outer forearm and buttock areas to represent facultative and constitutive skin color, respectively. In our study population consisting of isolated Mongolian subjects, with common histories of environmental UV exposure during their nomadic life, facultative skin color adjusted by constitutive skin color was used to indicate tanning ability. Through linkage analysis and family-based association tests of 345 Mongolian subjects, we identified 2 potential linkage regions regulating tanning ability on 5q35.3 and 12q13.2, having 6 and 7 significant single nucleotide polymorphisms (SNPs), respectively. Those significant SNPs were located in or adjacent to potential candidate genes related to tanning ability: GRM6, ATF1, WNT1, and SILV/Pmel17.

Keywords

Genetic association study;Linkage analysis;Microsatellite repeats;Single nucleotide polymorphism;Tanning

References

  1. Walker, S. and Young, A. (2008) Acute and chronic effects of ultraviolet radiation on the skin; in Fitzpatrick's Dermatology in General Medicine (Wolff, K., Goldsmith, L., Katz, S., Gilchrest, B., Paller, A. and Leffell, D., eds.), pp. 809, Mc Graw-Hill, NewYork, USA.
  2. Gilchrest, B., Park, H., Eller, M. and Yaar, M. (1998) The photobiology of the tanning response; in The Pigmentary System: Physiology and Pathophysiology (Nordlund, J. J., ed.), pp. 359, Oxford University Press, New York, USA.
  3. Han, J., Colditz, G. A. and Hunter, D. J. (2006) Risk factors for skin cancers: a nested case-control study within the Nurses' Health Study. Int. J. Epidemiol. 35, 1514-1521. https://doi.org/10.1093/ije/dyl197
  4. Quevedo, W. C. and Holstein, T. J. (2007) General Biology of Mammalian Pigmentation; in The Pigmentary System: Physiology and Pathophysiology (Nordlund, J. J., Boissy, R. E., Hearing, V. J., King, R. A., Oetting, W. S. and Ortonne, J.-P., eds.), pp. 61-90, Blackwell Publishing, Oxford, UK.
  5. Sulem, P., Gudbjartsson, D. F., Stacey, S. N., Helgason, A., Rafnar, T., Jakobsdottir, M., Steinberg, S., Gudjonsson, S. A., Palsson, A., Thorleifsson, G., Palsson, S., Sigurgeirsson, B., Thorisdottir, K., Ragnarsson, R., Benediktsdottir, K. R., Aben, K. K., Vermeulen, S. H., Goldstein, A. M., Tucker, M. A., Kiemeney, L. A., Olafsson, J. H., Gulcher, J., Kong, A., Thorsteinsdottir, U. and Stefansson, K. (2008) Two newly identified genetic determinants of pigmentation in Europeans. Nat. Genet. 40, 835-837. https://doi.org/10.1038/ng.160
  6. Kayser, M., Liu, F., Janssens, A. C., Rivadeneira, F., Lao, O., van Duijn, K., Vermeulen, M., Arp, P., Jhamai, M. M., van Ijcken, W. F., den Dunnen, J. T., Heath, S., Zelenika, D., Despriet, D. D., Klaver, C. C., Vingerling, J. R., de Jong, P. T., Hofman, A., Aulchenko, Y. S., Uitterlinden, A. G., Oostra, B. A. and van Duijn, C. M. (2008) Three genome-wide association studies and a linkage analysis identify HERC2 as a human iris color gene. Am. J. Hum. Genet. 82, 411-423. https://doi.org/10.1016/j.ajhg.2007.10.003
  7. Han, J., Kraft, P., Nan, H., Guo, Q., Chen, C., Qureshi, A., Hankinson, S. E., Hu, F. B., Duffy, D. L., Zhao, Z. Z., Martin, N. G., Montgomery, G. W., Hayward, N. K., Thomas, G., Hoover, R. N., Chanock, S. and Hunter, D. J. (2008) A genome-wide association study identifies novel alleles associated with hair color and skin pigmentation. PLoS. Genet. 4, e1000074. https://doi.org/10.1371/journal.pgen.1000074
  8. Sulem, P., Gudbjartsson, D. F., Stacey, S. N., Helgason, A., Rafnar, T., Magnusson, K. P., Manolescu, A., Karason, A., Palsson, A., Thorleifsson, G., Jakobsdottir, M., Steinberg, S., Palsson, S., Jonasson, F., Sigurgeirsson, B., Thorisdottir, K., Ragnarsson, R., Benediktsdottir, K. R., Aben, K. K., Kiemeney, L. A., Olafsson, J. H., Gulcher, J., Kong, A., Thorsteinsdottir, U. and Stefansson, K. (2007) Genetic determinants of hair, eye and skin pigmentation in Europeans. Nat. Genet. 39, 1443-1452. https://doi.org/10.1038/ng.2007.13
  9. Stokowski, R. P., Pant, P. V., Dadd, T., Fereday, A., Hinds, D. A., Jarman, C., Filsell, W., Ginger, R. S., Green, M. R., van der Ouderaa, F. J. and Cox, D. R. (2007) A genomewide association study of skin pigmentation in a South Asian population. Am. J. Hum. Genet. 81, 1119-1132. https://doi.org/10.1086/522235
  10. Nan, H., Kraft, P., Qureshi, A. A., Guo, Q., Chen, C., Hankinson, S. E., Hu, F. B., Thomas, G., Hoover, R. N., Chanock, S., Hunter, D. J. and Han, J. (2009) Genome-wide association study of tanning phenotype in a population of European ancestry. J. Invest. Dermatol. 129, 2250-2257. https://doi.org/10.1038/jid.2009.62
  11. Cartwright, R. A. (1975) Skin reflectance results from Holy Island, Northumberland. Ann. Hum. Biol. 2, 347-354. https://doi.org/10.1080/03014467500000961
  12. Clark, P., Stark, A. E., Walsh, R. J., Jardine, R. and Martin, N. G. (1981) A twin study of skin reflectance. Ann. Hum. Biol. 8, 529-541. https://doi.org/10.1080/03014468100005371
  13. Frost, P. (1988) Human skin color: a possible relationship between its sexual dimorphism and its social perception. Perspect. Biol. Med. 32, 38-58. https://doi.org/10.1353/pbm.1988.0010
  14. Jaswal, I. J. (1983) Pigmentary variation in Indian populations. Acta. Anthropogenet. 7, 75-83.
  15. Mehrai, H. and Sunderland, E. (1990) Skin colour data from Nowshahr City, northern Iran. Ann. Hum. Biol. 17, 115-120. https://doi.org/10.1080/03014469000000862
  16. Williams-Blangero, S. and Blangero, J. (1991) Skin color variation in eastern Nepal. Am. J. Phys. Anthropol. 85, 281-291. https://doi.org/10.1002/ajpa.1330850306
  17. Burton, P. R., Tobin, M. D. and Hopper, J. L. (2005) Key concepts in genetic epidemiology. Lancet. 366, 941-951. https://doi.org/10.1016/S0140-6736(05)67322-9
  18. Frisancho, A. R., Wainwright, R. and Way, A. (1981) Heritability and components of phenotypic expression in skin reflectance of Mestizos from the Peruvian lowlands. Am. J. Phys. Anthropol. 55, 203-208. https://doi.org/10.1002/ajpa.1330550207
  19. Morgans, C. W., Brown, R. L. and Duvoisin, R. M. (2010) TRPM1: the endpoint of the mGluR6 signal transduction cascade in retinal ON-bipolar cells. Bioessays. 32, 609-614. https://doi.org/10.1002/bies.200900198
  20. Oancea, E., Vriens, J., Brauchi, S., Jun, J., Splawski, I. and Clapham, D. E. (2009) TRPM1 forms ion channels associated with melanin content in melanocytes. Sci. Signal. 2, ra21. https://doi.org/10.1126/scisignal.2000146
  21. Bellone, R. R., Forsyth, G., Leeb, T., Archer, S., Sigurdsson, S., Imsland, F., Mauceli, E., Engensteiner, M., Bailey, E., Sandmeyer, L., Grahn, B., Lindblad-Toh, K. and Wade, C. M. (2010) Fine-mapping and mutation analysis of TRPM1: a candidate gene for leopard complex (LP) spotting and congenital stationary night blindness in horses. Brief. Funct. Genomics. 9, 193-207. https://doi.org/10.1093/bfgp/elq002
  22. Bellone, R. R., Brooks, S. A., Sandmeyer, L., Murphy, B. A., Forsyth, G., Archer, S., Bailey, E. and Grahn, B. (2008) Differential gene expression of TRPM1, the potential cause of congenital stationary night blindness and coat spotting patterns (LP) in the Appaloosa horse (Equus caballus). Genetics. 179, 1861-1870. https://doi.org/10.1534/genetics.108.088807
  23. Goding, C. R. (2000) Mitf from neural crest to melanoma: signal transduction and transcription in the melanocyte lineage. Genes. Dev. 14, 1712-1728.
  24. Feige, E., Poling, L. and Fisher, D. (2006) MITF: Critical Regulator of the Melanocyte Lineage; in From melanocytes to melanoma: the progression to malignancy (Hearing, V. and Leong, S., eds.), pp. 51-69, Humana Pr Inc, Totowa, USA.
  25. Moore, B. A., Miskimins, R. and Miskimins, W. K. (1999) ATF-1 is activated in response to UV irradiation in B16 melanoma cells. Mol. Cell. Biol. Res. Commun. 1, 1-6. https://doi.org/10.1006/mcbr.1999.0100
  26. Park, H. Y., Pongpudpunth, M., Lee, J. and Yaar, M. (2008) Biology of Melanocytes; in Fitzpatrick's Dermatology in General Medicine (Wolff, K., Goldsmith, L. A., Katz, S. I., Gilchrest, B. A., Paller, A. S. and Leffell, D. J., eds.), pp. 591-608, Mc Graw-Hill, NewYork, USA.
  27. Choi, W., Miyamura, Y., Wolber, R., Smuda, C., Reinhold, W., Liu, H., Kolbe, L. and Hearing, V. J. (2010) Regulation of human skin pigmentation in situ by repetitive UV exposure: molecular characterization of responses to UVA and/or UVB. J. Invest. Dermatol. 130, 1685-1696. https://doi.org/10.1038/jid.2010.5
  28. Ju, Y. S., Park, H., Lee, M. K., Kim, J. I., Sung, J., Cho, S. I. and Seo, J. S. (2008) A genome-wide Asian genetic map and ethnic comparison: the GENDISCAN study. BMC. Genomics. 9, 554. https://doi.org/10.1186/1471-2164-9-554
  29. Kim, J. I., Ju, Y. S., Park, H., Kim, S., Lee, S., Yi, J. H., Mudge, J., Miller, N. A., Hong, D., Bell, C. J., Kim, H. S., Chung, I. S., Lee, W. C., Lee, J. S., Seo, S. H., Yun, J. Y., Woo, H. N., Lee, H., Suh, D., Kim, H. J., Yavartanoo, M., Kwak, M., Zheng, Y., Lee, M. K., Kim, J. Y., Gokcumen, O., Mills, R. E., Zaranek, A. W., Thakuria, J., Wu, X., Kim, R. W., Huntley, J. J., Luo, S., Schroth, G. P., Wu, T. D., Kim, H., Yang, K. S., Park, W. Y., Church, G. M., Lee, C., Kingsmore, S. F. and Seo, J. S. (2009) A highly annotated whole-genome sequence of a Korean individual. Nature. 460, 1011-1015. https://doi.org/10.1038/nature08211
  30. Almasy, L. and Blangero, J. (1998) Multipoint quantitative-trait linkage analysis in general pedigrees. Am. J. Hum. Genet. 62, 1198-1211. https://doi.org/10.1086/301844
  31. Laird, N. M. and Lange, C. (2006) Family-based designs in the age of large-scale gene-association studies. Nat. Rev. Genet. 7, 385-394.

Cited by

  1. Combined linkage and association analyses identify a novel locus for obesity nearPROX1in Asians vol.21, pp.11, 2013, https://doi.org/10.1002/oby.20153
  2. A family-based association study after genome-wide linkage analysis identified two genetic loci for renal function in a Mongolian population vol.83, pp.2, 2013, https://doi.org/10.1038/ki.2012.389
  3. Inference of kinship coefficients from Korean SNP genotyping data vol.46, pp.6, 2013, https://doi.org/10.5483/BMBRep.2013.46.6.177
  4. Shades of complexity: New perspectives on the evolution and genetic architecture of human skin pp.00029483, 2018, https://doi.org/10.1002/ajpa.23737
  5. Recent evolution of the human skin barrier vol.27, pp.8, 2018, https://doi.org/10.1111/exd.13689