Estimating Ozone Sensitivity Coefficients to NOx and VOC Emissions Using BFM and HDDM for A 2007 June Episode

HDDM과 BFM을 이용한 NOx와 VOC 배출량에 대한 오존민감도계수 산정 및 결과 비교: 2007년 6월 수도권 사례

  • Kim, Soon-Tae (Division of Environmental, Civil & Transportation Engineering, Ajou University)
  • 김순태 (아주대학교 환경건설교통공학부)
  • Received : 2011.10.04
  • Accepted : 2011.11.23
  • Published : 2011.11.30


The accuracy of ozone sensitivity coefficients estimated with HDDM (High-order Decoupled Direct Method) can vary depending on the $NO_x$ (Nitrogen Oxides) and VOC (Volatile Organic Compound) conditions. In order to evaluate the applicability of HDDM over the Seoul Metropolitan Area (SMA) during a high ozone episode in 2007 June, we compare BFM (Brute Force Method) and HDDM in terms of the $1^{st}$-order ozone sensitivity coefficient to explain ozone change in response to changes in NOx and VOC emissions, and the $2^{nd}$-order ozone sensitivity coefficient to represent nonlinear response of ozone to the emission changes. BFM and HDDM estimate comparable ozone sensitivity coefficients, exhibiting similar spatial and temporal variations over the SMAduring the episode. NME (Normalized Mean Error) between BFM and HDDM for the episode average $1^{st}$- and $2^{nd}$-order ozone sensitivity coefficients to NOx and VOC emissions are less than 3% and 9%, respectively. For the daily comparison, NME for the $1^{st}$- and $2^{nd}$-order ozone sensitivity coefficients are less than 4% ($R^2$ > 0.96) and 15% ($R^2$ > 0.90), respectively. Under the emission conditions used in this study, two methods show negative episode average $1^{st}$-order ozone sensitivity coefficient to $NO_x$ emissions over the core SMA. The $2^{nd}$-order ozone sensitivity coefficient to $NO_x$ emissions leads ozone to respond muchnonlinear to the reduction in $NO_x$ emissions over Seoul. Nonlinear ozone response to reduction in VOC emissions is mitigated due to the $2^{nd}$-order ozone sensitivity coefficient which is much smaller than the $1^{st}$-order ozone sensitivity coefficient to the emissions in the magnitude.


Ozone sensitivity coefficient;Brute Force Method;High-order Decoupled Direct Method;VOC and NOx emissions;Nonlinear ozone response


  1. 김선미, 김순태, 2010, 한국 미국 일본의 대기환경 기준 초과지역 지정 기준 비교, 추계학술대회 논문집, 한국대기환경학회, 321.
  2. 김순태, 2011, 2007년 6월 수도권 오존모사 I - 광화학측정자료를 이용한 SAPRC99 화학종별 휘발성유기물질 배출량 입력자료 평가, 한국대기환경학회지, 27(5), 485-622.
  3. 유승성, 김흥주, 김홍기, 허미숙, 임성철, 선우영, 정권, 김주형, 2006, 종로 지역 VOCs와 NOx의 오존생성 기여도에 대한 평가, 추계학술대회 논문집, 한국대기환경학회, 314-316.
  4. 이종현, 한진석, 윤혜경, 조석연, 2007, 수도권에서 오존 생성 기여도 산출에 관한 연구, 한국대기환경학회지, 23(3), 286-296
  5. 이용미, 이현주, 이동원, 김종춘, 홍지형, 2009, 고농도 오존 사례일을 통한 수도권지역의 배출량 변화에 따른 민감도 분석, 춘계학술대회 논문집, 한국대기환경학회, 529-530.
  6. 정용, 전미경, 권용식, 1997, 대기 도존 농도에 미치는 VOC의 영향 (부천시를 중심으로), 추계학술대회 논문집, 한국대기환경학회, 177.
  7. Byun, D. W., Ching, J. K. S.,1999, Science Algorithms of the EPA Models-3 Community Multi-scale Air Quality (CMAQ) Modeling System, EPA Report, EPA/600/R-99/030, NERL, Research Triangle Park, NC.
  8. Byun, D. W., Kim, S., Kim, S. B., 2007, Evaluation of air quality models for the simulation of a high ozone episode in the Houston metropolitan area Atmospheric Environment, 41, 837-853.
  9. Carter, W. P. L., 1999, Documentation of the SAPRC-99 Chemical Mechanism for VOC Reactivity Assessment, Report to California Air Resources Board, Contracts 92-329 and 95-308.
  10. Cheng, F.-Y., Kim, S., Byun, D. W., 2008, Application of high resolution land use and land cover data for atmospheric modeling in the Houston-Galveston Metropolitan area: Part II Air quality simulation results, Atmospheric Environment, 42, 4853-4869.
  11. CMAS, 2010, http://www.
  12. Cohan, D. S., 2004, Applicability of CMAQ-DDM to Source Apportionment and Control Strategy Development, 3rd Annual CMAS Models-3 Users' Conference, October 18-20, 2004, Chapel Hill, NC.
  13. Cohan, D. S., Hakami, A., Hu, Y., Russell, A. G., 2005, Nonlinear response of ozone to emissions: Source apportionment and sensitivity analysis, Environ. Sci. Technol., 39, 6739-6748.
  14. Dodge, M., 1987, Chemistry of Oxidant Formation: Implications for Designing Effective Control Strategies, U.S. Environmental Protection Agency, Washington, D.C. EPA/600/D-87/114 (NTIS PB87179990).
  15. ENVIRON, 2008, Higher-Order Decoupled Direct Method (HDDM) for Ozone Modeling Sensitivity Analyses and Code Refinements, Final Report.
  16. ENVIRON, 2010, User's guide to the Comprehensive Air Quality Model with Extension (CAMx) version 5.30.
  17. Kim, S., Moon, N., Byun, D. W., 2008, Korea Emissions Inventory Processing Using the US EPA's SMOKE System, Asian Journal of Atmospheric Environment, 2(1), 34-46.
  18. Kim, S., Byun, D. W., Cohan, D., 2009, Contributions of inter- and intra-state emissions to ozone over Dallas-Fort Worth, Texas, Civ. Eng. Environ. Syst. 26, 103-116.
  19. Napelenok, S. L., Foley, K. M., Kang, D., Mathur, R., Pierce, T., Rao, S. T., 2011, Dynamic evaluation of regional air quality model's response to emission reductions in the presence of uncertain emission inventories, Atmospheric Environment, 45, 4091-4098.
  20. Tang, W., Cohan, D. S., Morris, G. A., Byun, D. W., Luke, W. T., 2011, Influence of vertical mixing uncertainties on ozone simulation in CMAQ, Atmospheric Environment, 45, 2898-2909.
  21. U.S. Environmental Protection Agency, 2007, Guidance for Setting Reasonable Progress Goals under the Regional Haze Program, Research Triangle Park, NC
  22. Zhang, H., Ying, Q., 2011, Contributions of local and regional sources of NOx to ozone concentrations in Southeast Texas, Atmospheric Environment, 45, 2877-2887.

Cited by

  1. Ozone Simulations over the Seoul Metropolitan Area for a 2007 June Episode, Part V: Application of CMAQ-HDDM to Predict Ozone Response to Emission Change vol.27, pp.6, 2011,