DOI QR코드

DOI QR Code

A data mining approach to compressive strength of CFRP-confined concrete cylinders

Mousavi, S.M.;Alavi, A.H.;Gandomi, A.H.;Esmaeili, M. Arab;Gandomi, M.

  • Received : 2010.05.11
  • Accepted : 2010.10.06
  • Published : 2010.12.20

Abstract

In this paper, compressive strength of carbon fiber reinforced polymer (CFRP) confined concrete cylinders is formulated using a hybrid method coupling genetic programming (GP) and simulated annealing (SA), called GP/SA, and a robust variant of GP, namely multi expression programming (MEP). Straightforward GP/SA and MEP-based prediction equations are derived for the compressive strength of CFRP-wrapped concrete cylinders. The models are constructed using two sets of predictor variables. The first set comprises diameter of concrete cylinder, unconfined concrete strength, tensile strength of CFRP laminate, and total thickness of CFRP layer. The most widely used parameters of unconfined concrete strength and ultimate confinement pressure are included in the second set. The models are developed based on the experimental results obtained from the literature. To verify the applicability of the proposed models, they are employed to estimate the compressive strength of parts of test results that were not included in the modeling process. A sensitivity analysis is carried out to determine the contributions of the parameters affecting the compressive strength. For more verification, a parametric study is carried out and the trends of the results are confirmed via some previous studies. The GP/SA and MEP models are able to predict the ultimate compressive strength with an acceptable level of accuracy. The proposed models perform superior than several CFRP confinement models found in the literature. The derived models are particularly valuable for pre-design purposes.

Keywords

CFRP-confined concrete;compressive strength;genetic programming;simulated annealing;multi expression programming;formulation

References

  1. Alavi, A.H., Ameri, M., Gandomi, A.H. and Mirzahosseini, M.R. (2010b), "Formulation of flow number of asphalt mixes using a hybrid computational method", Constr. Build. Mater., DOI: 10.1016/j.conbuildmat. 2010.09.010. (in press)
  2. Alavi, A.H., Gandomi, A.H. and Heshmati, A.A.R. (2010c), "Discussion on soft computing approach for realtime estimation of missing wave heights", Ocean Eng., DOI: 10.1016/j.oceaneng.2010.06.003. (in press)
  3. Alavi, A.H., Gandomi, A.H., Sahab, M.G. and Gandomi, M. (2010a), "Multi expression programming: a new approach to formulation of soil classification", Eng. Comp., 26(2), 111-118. https://doi.org/10.1007/s00366-009-0140-7
  4. Alavi, A.H. and Gandomi, A.H. (2010), "A robust data mining approach for formulation of geotechnical engineering systems", Int. J. Comput. Aided Meth. Eng.-Eng. Computations. (in press)
  5. Baykasoglu, A., Gullub, H., Canakci, H. and Ozbak r, L. (2008), "Prediction of compressive and tensile strength of limestone via genetic programming", Expert. Syst. Appl., 35(1-2), 111-123. https://doi.org/10.1016/j.eswa.2007.06.006
  6. Berthet, J.F., Ferrier, E. and Hamelin, P. (2006), "Compressive behavior of concrete externally confined by composite jackets, Part B: modeling", Const. Build. Mater., 20(5), 338-347. https://doi.org/10.1016/j.conbuildmat.2005.01.029
  7. Brameier, M. and Banzhaf, W. (2001), "A comparison of linear genetic programming and neural networks in medical data mining", IEEE T. Evolut. Comput., 5(1), 17-26. https://doi.org/10.1109/4235.910462
  8. Brameier, M. and Banzhaf, W. (2007), Linear Genetic Programming, Springer Science + Business Media, New York.
  9. Canakci, H., Baykasoglu, A. and Güllü, H. (2009), "Prediction of compressive and tensile strength of Gaziantep basalts via neural networks and gene expression programming", Neural Comput. Appl., 18(8), 1031-1041. https://doi.org/10.1007/s00521-008-0208-0
  10. Cerny, V. (1985), "Thermodynamical approach to the traveling salesman problem: an efficient simulation algorithm", J. Optimiz. Theory App., 45, 41-52. https://doi.org/10.1007/BF00940812
  11. Cevik, A. and Sonebi, M. (2008), "Modelling the performance of self-compacting SIFCON of cement slurries using genetic programming technique", Comput. Concr., 5(5), 475-490. https://doi.org/10.12989/cac.2008.5.5.475
  12. Conrads, M., Dolezal, O., Francone, F.D. and Nordin, P. (2004), Discipulus $Lite^{TM}$-fast Genetic Programming based on AIM Learning Technology, Register Machine Learning Technologies Inc., Littleton.
  13. Deschaine, L.M., Zafran, F.A., Patel, J.J., Amick, D., Pettit, R., Francone, F.D., Nordin, P., Dilkes, E. and Fausett, L.V. (2000), "Solving the unsolved using machine learning, data mining and knowledge discovery to model a complex production process", Proceedings of the Advanced Technology Simulation Conference, Washington DC, April.
  14. Fardis, M.N. and Khalili, H. (1981), "Concrete encased in fiberglass-reinforced plastic", J. Am. Concr. Ins., 78(6), 440-446.
  15. Fardis, M.N. and Khalili, H. (1982), "FRP-encased concrete as a structural material", Mag. Concr. Res., 34(121), 191-202. https://doi.org/10.1680/macr.1982.34.121.191
  16. Folino, G., Pizzuti, C. and Spezzano, G. (2000), "Genetic programming and simulated annealing: A hybrid method to evolve decision trees", Proceedings of the EuroGP'2000, 1802, 294-303.
  17. Francone, F.D. (2001), Discipulus $Pro^{TM}$ Software Owner's Manual, Littleton, CO, USA, Machine Learning Technologies Inc.
  18. Francone, F.D. (2004), Discipulus $Lite^{TM}$ Software Owner's Manual, Littleton, CO, USA, Machine Learning Technologies Inc.
  19. Frank, I.E. and Todeschini, R. (1994), The Data Analysis Handbook, Amsterdam, Elsevier, The Netherland.
  20. Gandomi, A.H., Alavi, A.H. and Sahab, M.G. (2010a), "New formulation for compressive strength of CFRP confined concrete cylinders using linear genetic programming", Mater. Struct., 43(7), 963-983. https://doi.org/10.1617/s11527-009-9559-y
  21. Gandomi, A.H., Alavi, A.H., Mirzahosseini, M.R. and Moghadas Nejad, F. (2010b), "Nonlinear genetic-based models for prediction of flow number of asphalt mixtures", J. Mater. Civil Eng. ASCE, DOI: 10.1061/ (ASCE)MT.1943-5533.0000154. (in press)
  22. Golbraikh, A. and Tropsha, A. (2002), "Beware of $q^2$", J. Mole. Graph. Model., 20, 269-276. https://doi.org/10.1016/S1093-3263(01)00123-1
  23. Karhari, V.M. and Gao, Y. (1997), "Composite jacketed concrete under uniaxial compression verification of simple design equation", J. Mater. Civil Eng.-ASCE, 9(4), 185-193. https://doi.org/10.1061/(ASCE)0899-1561(1997)9:4(185)
  24. Kirkpatrick, S., Gelatt, C.D. and Vecchi, M.P. (1983), "Optimisation by simulated annealing", Science, 220(4598), 671-680. https://doi.org/10.1126/science.220.4598.671
  25. Koza, J.R. (1992), Genetic Programming: On the Programming of Computers by Means of Natural Selection, MIT Press, Cambridge (MA).
  26. Kraslawski, A., Pedrycz, W. and Nyström, L. (1999), "Fuzzy neural network as instance generator for case-based reasoning system: an example of selection of heat exchange equipment in mixing", Neural Comput. Appl., 8(2), 106-113. https://doi.org/10.1007/s005210050013
  27. Lam, L. and Teng, J.G. (2001), "Strength models for circular concrete columns confined by FRP composites", Proceedings of the Fiber Reinforced Plastics for Reinforced Concrete Structures, London.
  28. Lorenzis, L. (2001), "A comparative study of models on confinement of concrete cylinders with FRP composites", PhD thesis, Chalmers University of Technology.
  29. Lorenzis, L. and Tepfers, R. (2003), "Comparative study of models on connement of concrete cylinders with fiber-reinforced polymer composites", J. Comp. Constr., 7(3), 219-237. https://doi.org/10.1061/(ASCE)1090-0268(2003)7:3(219)
  30. Mander, J.B., Priestley, M.J.N. and Park, R. (1988), "Theoretical stress-strain model for confined concrete", J. Struct. Eng., 114(8), 1804-1849. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804)
  31. Matthys, S., Taerwe, L. and Audenaert, K. (1999), "Tests on axially loaded concrete columns confined by fiber reinforced polymer sheet wrapping," Proceedings of the 4th International Symposium Fiber Reinforced Polymer Reinforcement for Reinforced Concrete Structures (FRPRCS-4), 217-228.
  32. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H. and Teller, E. (1953), "Equation of state calculations by fast computing mechanics", J. Chem. Phys., 21(6), 1087-1092. https://doi.org/10.1063/1.1699114
  33. Micelli, F., Myers, J.J. and Murthy, S. (2001), "Effect of environmental cycles on concrete cylinders confined with FRP", Proceedings of the International Conference on Composites in Construction (CCC 2001), Porto, Portugal, October.
  34. Mirmiran, A., Zagers, K. and Yuan, W. (2000), "Nonlinear finite element modeling of concrete confined by fiber composites", Finite. Elem. Anal. Des., 35, 79-96. https://doi.org/10.1016/S0168-874X(99)00056-6
  35. Miyauchi, K., Nishibayashi, S. and Inoue, S. (1997), "Estimation of strengthening effects with carbon fiber sheet for concrete column", Proceedings of the 3rd International Symposium (FRPRCS-3) on Non-metallic (FRP) Reinforcement for Concrete Structures, Sapporo, Japan.
  36. Mousavi, S.M., Gandomi, A.H., Alavi, A.H. and Vesalimahmood, M. (2010), "Modeling of compressive strength of HPC mixes using a combined algorithm of genetic programming and orthogonal least squares", Struct. Eng. Mech., 36(2), 225-241. https://doi.org/10.12989/sem.2010.36.2.225
  37. Oltean, M. (2004), Multi Expression Programming Source Code. Available at: http://www.mep.cs.ubbcluj.ro/
  38. Oltean, M. (2006), Multi Expression Programming, Technical Report, Babe -Bolyai University, Cluj-Napoca, Romania.
  39. Oltean, M. And Dumitrescu, D. (2002), Multi Expression programming. Technical report, UBB-01-2002, Babe -Bolyai University, Cluj-Napoca, Romania.
  40. Oltean, M. and Grosan, C. (2003a), "A comparison of several linear genetic programming techniques", Adv. Complex Syst., 14(4), 1-29.
  41. Oltean, M. and Grosan, C. (2003b), "Evolving evolutionary algorithms using multi expression programming", Proceedings of the 7th European Conference on Artificial Life, Dortmund. LNAI, Springer-Verlag.
  42. Richart, F.E., Brandtzaeg, A. and Brown, R.L. (1928), "A study of the failure of concrete under combined compressive stresses", University of Illinois, Engineering Experimental Station, Urbana, IL, Bulletin No. 185.
  43. Rochette, P. and Labossiere, P. (2000), "Axial testing of rectangular column models confined with composites", J. Comp. Constr., 4(3), 129-136. https://doi.org/10.1061/(ASCE)1090-0268(2000)4:3(129)
  44. Rousakis, T. (2001), "Experimental investigation of concrete cylinders confined by carbon frp sheets, under monotonic and cyclic axial compressive load", Research Report, Goteborg, Sweden, Chalmers University of Technology.
  45. Rousakis, T.C., Karabinis, A.I., Kiousis, P.D. and Tepfers, R. (2008), "Analytical modelling of plastic behaviour of uniformly FRP confined concrete members", Compos.: Part B, 39(7-8), 1104-1113. https://doi.org/10.1016/j.compositesb.2008.05.001
  46. Saafi, M., Toutanji, H.A. and Li, Z. (1999), "Behavior of concrete columns confined with fiber reinforced polymer tubes", ACI Mater. J., 96(4), 500-509.
  47. Shahawy, M., Mirmiran, A. and Beitelmann, T. (2000), "Tests and modeling of carbon-wrapped concrete columns", Compos. Part B: Eng., 31(6-7), 471-480. https://doi.org/10.1016/S1359-8368(00)00021-4
  48. Smith, G.N. (1986), Probability and Statistics in Civil Engineering, Collins, London.
  49. Spoelstra, M.R. and Monti, G. (1999), "FRP-confined concrete model", J. Comp. Constr., 3(3), 143-150. https://doi.org/10.1061/(ASCE)1090-0268(1999)3:3(143)
  50. Swingler, K. (1996), Applying Neural Networks a Practical Guide, Academic Press, New York.
  51. Torres, R.S., Falcao, A.X., Goncalves, M.A., Papa, J.P., Zhang, B., Fan, W. and Fox, E.A. (2009), "A genetic programming framework for content-based image retrieval", Pattern Recogn., 42(2), 283-292. https://doi.org/10.1016/j.patcog.2008.04.010
  52. Toutanji, H. (1999), "Stress-strain characteristics of concrete columns externally confined with advanced fiber composite sheets", ACI Mater. J., 96(3), 397-404.
  53. Xiao, Y. and Wu, H. (2000), "Compressive behavior of concrete confined by carbon fiber composite jackets", J. Mater. Civil Eng., 12(2), 139-146. https://doi.org/10.1061/(ASCE)0899-1561(2000)12:2(139)
  54. Cevik, A. and Guzelbey, I.H. (2008), "Neural network modeling of strength enhancement for CFRP-confined concrete cylinders", Build. Environ., 43(5), 751-763. https://doi.org/10.1016/j.buildenv.2007.01.036
  55. Samaan, M., Mirmiram, A. and Shahawy, M. (1998), "Model of concrete confined by fiber composites", J. Struct. Eng., 124(9), 1025-1031. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:9(1025)

Cited by

  1. An efficient method for the compressive behavior of FRP-confined concrete cylinders vol.12, pp.4, 2013, https://doi.org/10.12989/cac.2013.12.4.499