DOI QR코드

DOI QR Code

Biodiesel Production from Waste Cooking Oil Using Alkali Catalyst and Immobilized Enzyme 1. Fatty Acid Composition

알칼리 촉매와 고정화 효소를 이용한 폐식용유로 부터 바이오 디젤 생산 1. 지방산 조성

  • Shin, Choon-Hwan (Department of Energy & Environmental Engineering, Dongseo University)
  • 신춘환 (동서대학교 에너지환경공학과)
  • Received : 2010.08.10
  • Accepted : 2010.09.24
  • Published : 2010.10.31

Abstract

Since biodiesel as bioenergy is defined as ester compounds formed by esterification of animal/vegetable oils, in this study three vegetable cooking oils (market, waste and refined waste ones) were esterified by reactions of alkali catalyst and immobilized enzyme. The fatty acid composition of the formed ester compounds was analyzed to investigate the feasibility of biodiesel production. By lipolysis (i.e, hydrolysis of Triglyceride (TG)), all three vegetable oils used in this study were found to produce Diglyceride (DG), Monoglyceride (MD) and Fatty acid ethylester (FAEE). However, the amount of produced FAEE (which can be used as an energy source) was in the increasing order of market cooking oil, waste one and refined waste one. With NaOH catalyst, FAEE was produced about 24.92, 17.63 and 11.31 % for the respective oils while adding Lipozyme TL produced FAEE about 43.54, 38.16 and 24.47 %, respectively. This indicates that enzyme catalyst is more effective than alkali one for transesterification. In addition, it was found that the composition of fatty acids produced by hydrolysis of TG was unchanged with alkali and immobilized enzyme reactions. Thus it can be expected that stable conditions remain in the course of mixing with gasoline whose composition is similar to that of the fatty acids.

Keywords

Biodiesel;Vegetable cooking oil;Lipolysis;Fatty acid;Transesterification

References

  1. 김덕근, 최종두, 박지연, 2009, 황산을 이용한 열대작물 오일의 전처리 반응 최적화 및 바이오디젤 생산, KChE, 47 (6), 762-767.
  2. 김승수, 김기호, 신성철, 임의순, 2007, 바이오디젤 보급을 위한 정책 및 시장현황, 공업화학과 전망, 11 (3), 401-411.
  3. 김승수, 김영식, 김진수, 2008, 국내 신재생에너지로서의 바이오디젤 동향, 공업화학과 전망 11(3), 1-10.
  4. 김영주, 이진석, 김덕근, 2007, 강산성 이온성 액체에 의한 유리지방산의 에스테르화 연구, KChE, 45(3), 286-290.
  5. 백성신, 권경태, 정고운, 안향민, 심정은, 강희문, 전병수, 2009, 초임계 이산화탄소에서 밀배아유의 효소적 에탄올화 반응 특성, KChE, 47(5), 546-552.
  6. 서영웅, 2008, 수첨 바이오디젤(HBD) 생산기술의 최근 동향 및 전망, 공업화학과 전망, 11(3), 35-45.
  7. 신춘환, 김희숙, 허근태, 1996, 폐식용유로 제조된 재생 비누의 생분해 속도, 한국 환경과학회지, 5(1), 83-91.
  8. 임영관, 전철환, 김신, 2009, 다양한 식물성오일로부터 생산된 바이오디젤의 혼합에 따른 연료특성 분석, KChE, 47 (2), 237-242.
  9. 지식경제부 고시 제 005-55호, 2005, 바이오디젤 시범 보급사업 추진에 관한 고시.
  10. 지식경제부 고시 제 007-83호, 2007, 바이오디젤 이용 및 보급 확대 연료의 인정에 관한 고시.
  11. 최종두, 김덕근, 박지연, 2008, Amberlyst-15를 이용한 자트로파 오일의 에스테르화 반응 최적화 및 바이오 디젤 생산, KChE, 46(1), 194-199.
  12. 홍연기, 홍원희, 2007, 바이오디젤 공정기술과 연료특성, KChE, 45(5), 424-432.
  13. Designer, G. K., 2008, Biodiesel: Optimizing fatty ester composition to improve fuel properties, Energy Fuels, 22(2), 1358-1364. https://doi.org/10.1021/ef700639e
  14. Elliott, D. C., 2007, Historical developments in hydroprocessing bio-oils, Energy Fuels, 21(3), 1792-1815. https://doi.org/10.1021/ef070044u
  15. Herod, A. A., Bartle, K. D., Kandiyoti, R., 2007, Characterization of heavy hydrocarbons by chromatographic and mass spectrometric methods, energy Fuels, 21(4), 2176-2203. https://doi.org/10.1021/ef060642t
  16. Koh, T. S., Chung, K. H., 2008, Production of biodiesel from waste frying oil by transesterification on zeolite catalysts with different acidity, J. Korean Ind. Eng. Chem., 19(2), 214-221.
  17. Lee, K. W., 2007, A kinetic study on the transesterification of glycerol monooleat and used soybean oil to biodiesel, J. Ind. Eng. Chem., 13(5), 799-807 https://doi.org/10.1021/ie50141a022