DOI QR코드

DOI QR Code

Application of Polyaniline to an Enzyme-Amplified Electrochemical Immunosensor as an Electroactive Report Molecule

  • Kwon, Seong-Jung (Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Seo, Myung-Eun (Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Yang, Hae-Sik (Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University) ;
  • Kim, Sang-Youl (Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Kwak, Ju-Hyoun (Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST))
  • Received : 2010.07.06
  • Accepted : 2010.07.16
  • Published : 2010.11.20

Abstract

Conducting polymers (CPs) are widely used as matrixes for the entrapment of enzymes in analytical chemistry and biosensing devices. However, enzyme-catalyzed polymerization of CPs is rarely used for immunosensing due to the difficulties involved in the quantitative analysis of colloidal CPs in solution phase. In this study, an enzyme-amplified electrocatalytic immunosensor employing a CP as a redox marker has been developed. A polyanionic polymer matrix, $\alpha$-amino-$\omega$-thiol terminated poly(acrylic acid), was employed for precipitation of CP. The acrylic acid group acts as a polyanionic template. The thiol terminus of the polymer was used to produce self-assembled monolayers (SAMs) on Au electrodes and the amine terminus was employed for immobilization of biomolecules. In an enzymeamplified sandwich type immunosensor, the polyaniline (PANI) produced enzymatically is attracted by the electrostatic force of the matrix polymer. The precipitated PANI was characterized by electrochemical methods.

Keywords

Polyaniline;Conducting polymer;Enzymatic synthesis;Electrochemical detection;Immunosensor

Acknowledgement

Supported by : National Research Foundation of Korea (NRF), Korea Research Foundation

References

  1. Gerard, M.; Chauey, A.; Malhotra, B. D. Biosens. Bioelectron. 2002, 17, 345. https://doi.org/10.1016/S0956-5663(01)00312-8
  2. Ghindilis, L.; Atanasov, P.; Wilkins, M.; Wilkins, E. Biosens. Bioelectron. 1998, 13, 113. https://doi.org/10.1016/S0956-5663(97)00031-6
  3. Van Emon, J. M.; Gerlach, C. L.; Bowman, K. J. Chromatogr. B 1998, 715, 211. https://doi.org/10.1016/S0378-4347(98)00261-8
  4. Limoges, B.; Saveant, J.; Yazidi, D. J. Am. Chem. Soc. 2003, 125, 9192. https://doi.org/10.1021/ja0354263
  5. Kim, H.; Zhang, Y.; Heller, A. Anal. Chem. 2004, 76, 2411. https://doi.org/10.1021/ac035487j
  6. Patolsky, F.; Lichtenstein, A.; Willner, I. Nat. Biotechnol. 2001, 19, 253. https://doi.org/10.1038/85704
  7. Wilson, M. S. Anal. Chem. 2005, 77, 1496. https://doi.org/10.1021/ac0485278
  8. Ehrnstrom, R. Lab Chip 2002, 2, 26N. https://doi.org/10.1039/b203480h
  9. Kwon, S. J.; Kim, E.; Yang, H.; Kwak, J. Analyst 2006, 131, 402. https://doi.org/10.1039/b509969b
  10. Kwon, S. J.; Yang, H.; Jo, K.; Kwak, J. Analyst 2008, 133, 1599. https://doi.org/10.1039/b806302h
  11. Situmorang, M.; Gooding, J. J.; Hibbert, D. B.; Barnett, D. Biosens. Bioelectron. 1998, 13, 953. https://doi.org/10.1016/S0956-5663(98)00033-5
  12. Trojanowicz, M.; Vel Krawczyk, T. K. Mikrochim. Acta 1995, 121, 167. https://doi.org/10.1007/BF01248249
  13. Schuhmann, W. Mikrochim. Acta 1995, 121, 1. https://doi.org/10.1007/BF01248237
  14. Adeloju, S. B.; Wallace, G. G Analyst 1996, 121, 699. https://doi.org/10.1039/an9962100699
  15. Sung, W. J.; Bae, Y. H. Anal. Chem. 2000, 72, 2177. https://doi.org/10.1021/ac9908041
  16. Xu, P.; Singh, A.; Kaplan, D. L. Adv. Polym. Sci. 2006, 194, 69. https://doi.org/10.1007/12_036
  17. Nissum, M.; Schiodt, C. B.; Welinder, K. G. Biochim. Biophy. Acta 2001, 1545, 339. https://doi.org/10.1016/S0167-4838(00)00295-8
  18. Nabid, M. R.; Entezami, A. A. J. App. Poly. Sci. 2004, 94, 254. https://doi.org/10.1002/app.20882
  19. Won, K.; Kim, Y. H.; An, E. S.; Lee, Y. S.; Song, B. K. Biomacromolecules 2004, 5, 1. https://doi.org/10.1021/bm034325u
  20. Malinauskas, A.; Malinauskiene, J.; Ramanavicius, A. Nanotechnology 2005, 16, R51. https://doi.org/10.1088/0957-4484/16/10/R01
  21. Kobayashi, S.; Uyama, H.; Kimura, S. Chem. Rev. 2001, 101, 3793. https://doi.org/10.1021/cr990121l
  22. Gao, Z.; Rafea, S.; Lim, L. H. Adv. Mater. 2007, 19, 602. https://doi.org/10.1002/adma.200601090
  23. Fan, Y; Chen, X.; Trigg, A. D.; Tung, C.-H.; Kong, J; Gao, Z. J. Am. Chem. Soc. 2007, 129, 5437. https://doi.org/10.1021/ja067477g
  24. Baba, A.; Tian, S.; Stefani, F.; Xia, C.; Wang, Z.; Advincula, R. C.; Johannsmann, D.; Knoll, W. J. Electroanal. Chem. 2004, 562, 95. https://doi.org/10.1016/j.jelechem.2003.08.012
  25. Virji, S.; Huang, J.; Kaner, R. B.; Weiller, B. H. Nano Lett. 2004, 4, 491. https://doi.org/10.1021/nl035122e
  26. Schomberg, D.; Salzmann, M.; Stephan, D. Enzyme Handbook; Springer: New York, USA, 1993; Vol. 7, EC 1.11.1.7., p 1.
  27. Feast, W. J.; Tsibouklis, J.; Pouwer, K. L.; Groenendaal, L.; Meijer, E. W. Polymer 1996, 37, 5017. https://doi.org/10.1016/0032-3861(96)00439-9
  28. Cruz-Silva, R.; Ruiz-Flores, C.; Arizmendi, L.; Romero-Garcia, J.; Arias-Marin, E.; Moggio, I.; Castillon, F. F.; Farias, M. H. Polymer 2006, 47, 1563. https://doi.org/10.1016/j.polymer.2005.12.082
  29. Cruz-Silva, R.; Romero-Garcia, J.; Angulo-Sanchez, J. L.; Ledezma- Perez, A.; Arias-Marin, E.; Moggio, I.; Farias, M. H. Euro. Poly. J. 2005, 41, 1129. https://doi.org/10.1016/j.eurpolymj.2004.11.012
  30. Sakharov, I. Y.; Alpeeva, I. S.; Efremov, E. E. J. Agric. Food Chem. 2006, 54, 1584. https://doi.org/10.1021/jf052643+

Cited by

  1. Development of a silver functionalised polyaniline electrochemical immunosensor for polychlorinated biphenyls vol.8, pp.39, 2016, https://doi.org/10.1039/C6AY01733A