DOI QR코드

DOI QR Code

Label-Free Electrochemical DNA Detection Based on Electrostatic Interaction between DNA and Ferrocene Dendrimers

  • Lee, Ji-Young (Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Kim, Byung-Kwon (Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Hwang, Seong-Pil (Department of Chemistry, Myongji University) ;
  • Lee, Young-Hoon (Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Kwak, Ju-Hyoun (Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST))
  • Received : 2010.06.29
  • Accepted : 2010.08.29
  • Published : 2010.11.20

Abstract

A label-free DNA detection method was developed for a simple electrochemical DNA sensor with a short assay time. Self-assembled monolayers of peptide nucleic acid were used as a probe on gold electrodes. The formation of the self-assembled monolayers on the gold electrodes was successfully checked by means of cyclic voltammetry. The target DNA, hybridized with peptide nucleic acid, can be detected by the anodic peak current of ferrocene dendrimers, which interact electrostatically with the target DNA. This anodic peak current was measured by square wave voltammetry at 0.3 V to decrease the detection limit on the order of the nanomolar concentrations. As a result, the label-free electrochemical DNA sensor can detect the target DNA in concentrations ranging from 1 nM to $1\;{\mu}M$ with a detection limit of 1 nM.

Keywords

Peptide nucleic acid;DNA detection;Ferrocene dendrimer;Label-free;Electrostatic interaction

Acknowledgement

Supported by : Korea Research Foundation

References

  1. Drummond, T. G.; Hill, M. G.; Barton, J. K. Nat. Biotechnol. 2003, 21, 1192. https://doi.org/10.1038/nbt873
  2. Zhang, L.; Sun, H.; Li, D.; Song, S.; Fan, C.; Wang, S. Macromol. Rapid Commun. 2008, 29, 1489. https://doi.org/10.1002/marc.200800260
  3. Sassolas, A.; Leca-Bouvier, B. D.; Blum, L. J. Chem. Rev. 2008, 108, 109. https://doi.org/10.1021/cr0684467
  4. Reisberg, S.; Dang, L. A.; Nguyen, Q. A.; Piro, B.; Noel, V.; Nielsen, P. E.; Le, L. A.; Pham, M. C. Talanta 2008, 76, 206. https://doi.org/10.1016/j.talanta.2008.02.044
  5. Homola, J.; Yee, S. S.; Gauglitz, G. Sens. Actuators, B Chem. 1999, 54, 3. https://doi.org/10.1016/S0925-4005(98)00321-9
  6. Fang, Z.; Kelley, S. O. Anal. Chem. 2009, 81, 612. https://doi.org/10.1021/ac801890f
  7. Steichen, M.; Decrem, Y.; Godfroid, E.; Buess-Herman, C. Biosens. Bioelectron. 2007, 22, 2237. https://doi.org/10.1016/j.bios.2006.10.041
  8. Won, B. Y.; Yoon, H. C.; Park, H. G. Analyst 2008, 133, 100. https://doi.org/10.1039/b712638g
  9. Cheng, A. K. H.; Ge, B.; Yu, H.-Z. Anal. Chem. 2007, 79, 5158. https://doi.org/10.1021/ac062214q
  10. Das, J.; Lee, J.-A.; Yang, H. Langmuir 2010, 26, 6804. https://doi.org/10.1021/la904089e
  11. Degefa, T. H.; Kwak, J. J. Electroanal. Chem. 2008, 612, 37. https://doi.org/10.1016/j.jelechem.2007.09.004
  12. Aoki, H.; Umezawa, Y. Electroanalysis 2002, 14, 1405. https://doi.org/10.1002/1521-4109(200211)14:19/20<1405::AID-ELAN1405>3.0.CO;2-G
  13. Aoki, H.; Bühlmann, P.; Umezawa, Y. Electroanalysis 2000, 12, 1272. https://doi.org/10.1002/1521-4109(200011)12:16<1272::AID-ELAN1272>3.0.CO;2-F
  14. Yu, D.; Kim, K. Bull. Korean Chem. Soc. 2009, 30, 955. https://doi.org/10.5012/bkcs.2009.30.4.955
  15. Wang, J.; Palecek, E.; Nielsen, P. E.; Rivas, G.; Cai, X.; Shiraishi, H.; Dontha, N.; Luo, D.; Farias, P. A. M. J. Am. Chem. Soc. 1996, 118, 7667. https://doi.org/10.1021/ja9608050
  16. Kelly, S. O.; Barton, J. K. Bioconjugate Chem. 1997, 8, 31. https://doi.org/10.1021/bc960070o
  17. Kang, D.; Zuo, X.; Yang, R.; Xia, F.; Plaxco, K. W.; White, R. J. Anal. Chem. 2009, 81, 9109. https://doi.org/10.1021/ac901811n
  18. Das, J.; Aziz, Md. A.; Yang, H. J. Am. Chem. Soc. 2006, 128, 16022. https://doi.org/10.1021/ja0672167
  19. Alfonta, L.; Singh, A. K.; Willner, I. Anal. Chem. 2001, 73, 91. https://doi.org/10.1021/ac000819v
  20. Patolsky, F.; Lichtenstein, A.; Willner, I. J. Am. Chem. Soc. 2000, 122, 418. https://doi.org/10.1021/ja992834r
  21. Yoon, H. C.; Hong, M.-Y.; Kim, H.-S. Anal. Chem. 2000, 72, 4420. https://doi.org/10.1021/ac0003044
  22. Kim, E.; Kim, K.; Yang, H.; Kim, Y. T.; Kwak, J. Anal. Chem. 2003, 75, 5665. https://doi.org/10.1021/ac034253x
  23. Kim, J. M.; Ju, H.; Choi, H. S.; Lee, J.; Kim, J.; Kim, J.; Kim, H. D.; Kim, J. Bull. Korean Chem. Soc. 2010, 31, 491. https://doi.org/10.5012/bkcs.2010.31.02.491
  24. Yoon, H. C.; Lee, D.; Kim, H.-S. Anal. Chim. Acta 2002, 456, 209. https://doi.org/10.1016/S0003-2670(02)00032-6
  25. Priyadarshy, S.; Risser, S. M.; Beratan, D. N. J. Biol. Inorg. Chem. 1998, 3, 196. https://doi.org/10.1007/s007750050221
  26. Kwon, S. J.; Yang, H.; Jo, K.; Kwak, J. Analyst 2008, 133, 1599. https://doi.org/10.1039/b806302h

Cited by

  1. Electron-transfer processes in dendrimers and their implication in biology, catalysis, sensing and nanotechnology vol.4, pp.4, 2012, https://doi.org/10.1038/nchem.1304
  2. Electrochemical biosensors based on dendrimers vol.70, pp.5, 2015, https://doi.org/10.1134/S1061934815050044