Label-Free Electrochemical DNA Detection Based on Electrostatic Interaction between DNA and Ferrocene Dendrimers

  • Lee, Ji-Young (Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Kim, Byung-Kwon (Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Hwang, Seong-Pil (Department of Chemistry, Myongji University) ;
  • Lee, Young-Hoon (Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Kwak, Ju-Hyoun (Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST))
  • Received : 2010.06.29
  • Accepted : 2010.08.29
  • Published : 2010.11.20


A label-free DNA detection method was developed for a simple electrochemical DNA sensor with a short assay time. Self-assembled monolayers of peptide nucleic acid were used as a probe on gold electrodes. The formation of the self-assembled monolayers on the gold electrodes was successfully checked by means of cyclic voltammetry. The target DNA, hybridized with peptide nucleic acid, can be detected by the anodic peak current of ferrocene dendrimers, which interact electrostatically with the target DNA. This anodic peak current was measured by square wave voltammetry at 0.3 V to decrease the detection limit on the order of the nanomolar concentrations. As a result, the label-free electrochemical DNA sensor can detect the target DNA in concentrations ranging from 1 nM to $1\;{\mu}M$ with a detection limit of 1 nM.


Peptide nucleic acid;DNA detection;Ferrocene dendrimer;Label-free;Electrostatic interaction


Supported by : Korea Research Foundation


  1. Drummond, T. G.; Hill, M. G.; Barton, J. K. Nat. Biotechnol. 2003, 21, 1192.
  2. Zhang, L.; Sun, H.; Li, D.; Song, S.; Fan, C.; Wang, S. Macromol. Rapid Commun. 2008, 29, 1489.
  3. Sassolas, A.; Leca-Bouvier, B. D.; Blum, L. J. Chem. Rev. 2008, 108, 109.
  4. Reisberg, S.; Dang, L. A.; Nguyen, Q. A.; Piro, B.; Noel, V.; Nielsen, P. E.; Le, L. A.; Pham, M. C. Talanta 2008, 76, 206.
  5. Homola, J.; Yee, S. S.; Gauglitz, G. Sens. Actuators, B Chem. 1999, 54, 3.
  6. Fang, Z.; Kelley, S. O. Anal. Chem. 2009, 81, 612.
  7. Steichen, M.; Decrem, Y.; Godfroid, E.; Buess-Herman, C. Biosens. Bioelectron. 2007, 22, 2237.
  8. Won, B. Y.; Yoon, H. C.; Park, H. G. Analyst 2008, 133, 100.
  9. Cheng, A. K. H.; Ge, B.; Yu, H.-Z. Anal. Chem. 2007, 79, 5158.
  10. Das, J.; Lee, J.-A.; Yang, H. Langmuir 2010, 26, 6804.
  11. Degefa, T. H.; Kwak, J. J. Electroanal. Chem. 2008, 612, 37.
  12. Aoki, H.; Umezawa, Y. Electroanalysis 2002, 14, 1405.<1405::AID-ELAN1405>3.0.CO;2-G
  13. Aoki, H.; Bühlmann, P.; Umezawa, Y. Electroanalysis 2000, 12, 1272.<1272::AID-ELAN1272>3.0.CO;2-F
  14. Yu, D.; Kim, K. Bull. Korean Chem. Soc. 2009, 30, 955.
  15. Wang, J.; Palecek, E.; Nielsen, P. E.; Rivas, G.; Cai, X.; Shiraishi, H.; Dontha, N.; Luo, D.; Farias, P. A. M. J. Am. Chem. Soc. 1996, 118, 7667.
  16. Kelly, S. O.; Barton, J. K. Bioconjugate Chem. 1997, 8, 31.
  17. Kang, D.; Zuo, X.; Yang, R.; Xia, F.; Plaxco, K. W.; White, R. J. Anal. Chem. 2009, 81, 9109.
  18. Das, J.; Aziz, Md. A.; Yang, H. J. Am. Chem. Soc. 2006, 128, 16022.
  19. Alfonta, L.; Singh, A. K.; Willner, I. Anal. Chem. 2001, 73, 91.
  20. Patolsky, F.; Lichtenstein, A.; Willner, I. J. Am. Chem. Soc. 2000, 122, 418.
  21. Yoon, H. C.; Hong, M.-Y.; Kim, H.-S. Anal. Chem. 2000, 72, 4420.
  22. Kim, E.; Kim, K.; Yang, H.; Kim, Y. T.; Kwak, J. Anal. Chem. 2003, 75, 5665.
  23. Kim, J. M.; Ju, H.; Choi, H. S.; Lee, J.; Kim, J.; Kim, J.; Kim, H. D.; Kim, J. Bull. Korean Chem. Soc. 2010, 31, 491.
  24. Yoon, H. C.; Lee, D.; Kim, H.-S. Anal. Chim. Acta 2002, 456, 209.
  25. Priyadarshy, S.; Risser, S. M.; Beratan, D. N. J. Biol. Inorg. Chem. 1998, 3, 196.
  26. Kwon, S. J.; Yang, H.; Jo, K.; Kwak, J. Analyst 2008, 133, 1599.

Cited by

  1. Electron-transfer processes in dendrimers and their implication in biology, catalysis, sensing and nanotechnology vol.4, pp.4, 2012,
  2. Electrochemical biosensors based on dendrimers vol.70, pp.5, 2015,