Applied Chemistry for Engineering (공업화학)
- Volume 21 Issue 6
- /
- Pages.697-701
- /
- 2010
- /
- 1225-0112(pISSN)
- /
- 2288-4505(eISSN)
A Study on Reactions of Palladium Anode Catalyst in Direct Formic Acid Fuel Cells
개미산 연료전지에서 연료극 팔라듐 촉매의 반응에 대한 연구
-
Han, Jong-Hee
(Fuel Cell Research Center, KIST) ;
- Kim, Jin-Soo (Department of Chemical Engineering, Kyung Hee University) ;
-
Yoon, Sung-Pil
(Fuel Cell Research Center, KIST) ;
-
Nam, Suk-Woo
(Fuel Cell Research Center, KIST) ;
-
Lim, Tae-Hoon
(Fuel Cell Research Center, KIST) ;
- Kwon, Yong-Chai (Department of Chemical and Environmental Technology, Inha Technical College)
-
한종희
(한국과학기술연구원 연료전지센터) ;
- 김진수 (경희대학교 화학공학과) ;
-
윤성필
(한국과학기술연구원 연료전지센터) ;
-
남석우
(한국과학기술연구원 연료전지센터) ;
-
임태훈
(한국과학기술연구원 연료전지센터) ;
- 권용재 (인하공업전문대학 화공환경과)
- Received : 2010.09.28
- Accepted : 2010.10.26
- Published : 2010.12.10
Abstract
We investigate the cell performance and characteristics of a direct formic acid fuel cell (DFAFC) using palladium (Pd) as a catalyst for anode. Pd is deposited on the electrolyte using the "direct paint" method. From a continuous three time-test of the polarization curve of the DFAFC, it is found that the catalytic activity of Pd and the cell performance of DFAFC steadily degrade as the tests are proceeded. This behavior may be due to the deactivation of Pd by formate (COOH) and hydroxyl (OH) groups, which are electrochemically dissociated from formic acid solution. Estimations of the degradation, followed by reactivation in activity of Pd catalyst and DFAFC cell performance are implemented by linear voltage sweep tests going in both positive and negative directions. When the maximum voltage of 1.0 V versus DHE is applied to the cell while a linear voltage sweep test going in negative directions, the activity of Pd catalyst and the DFAFC cell performance recover by the rehabilitation in activity of the deactivated Pd.
File
Acknowledgement
Supported by : Inha Technical College Research Grant
References
- C. Rice, S. Ha, R. I. Masel, P. Waszczuk, A. Wieckowski, and T. Barnard, J. Power Sources, 111, 83 (2002). https://doi.org/10.1016/S0378-7753(02)00271-9
- X. Yu and P. G. Pickup, J. Power Sources, 182, 124 (2008). https://doi.org/10.1016/j.jpowsour.2008.03.075
- Y. Zhu, S. Ha, and R. I. Masel, J. Power Sources, 130, 8 (2004). https://doi.org/10.1016/j.jpowsour.2003.11.051
- S. Ha, R. Larsen, Y. Zhu, and R. I. Masel, Fuel Cells, 4, 337 (2004). https://doi.org/10.1002/fuce.200400052
- J. H. Choi, K. J. Jeong, Y. Dong, J. H. Han, T. H. Im, J. S. Lee, and Y. E. Sung, J. Power Sources, 163, 71 (2006). https://doi.org/10.1016/j.jpowsour.2006.02.072
- C. Rice, S. Ha, R. I. Masel, and A. Wieckowski, J. Power Sources, 115, 229 (2003). https://doi.org/10.1016/S0378-7753(03)00026-0
- P. Waszczuk, T. Barnard, C. Rice, R. I. Masel, and A. Wieckowski, Electrochem. Commun., 4, 599 (2002). https://doi.org/10.1016/S1388-2481(02)00386-7
- L. L. Zhang, T. H. Lu, J. C. Bao, Y. W. Tang, and C. Li, Electrochem. Commun., 8, 1625 (2006). https://doi.org/10.1016/j.elecom.2006.07.033
- S. Y. Uhm, S. T. Chung, and J. Lee, Electrochem. Commun., 9, 2027 (2007). https://doi.org/10.1016/j.elecom.2007.05.029
- C. M. Misse, W. S. Jung, K. J. Jeong, J. K. Lee, J. Lee, J. H. Han, S. P. Yoon, S. W. Nam, T. H. Lim, and S. A. Hong, J. Power Sources, 162, 532 (2005).
- A. Capon and R. Parsons, J. Electroanal. Chem., 45, 205 (1973). https://doi.org/10.1016/S0022-0728(73)80158-5
- A. Capon and R. Parsons, J. Electroanal. Chem., 44, 239 (1973). https://doi.org/10.1016/S0022-0728(73)80250-5
- T. Iwasita, X. H. Xia, E. Herrero, and H. D. Liess, Langmuir, 12, 4260 (1996). https://doi.org/10.1021/la960264s
- M. Weber, J. T. Wang, S. Wasmus, and R. F. Savinell, J. Electrochem. Soc., 143, L158 (1996). https://doi.org/10.1149/1.1836961
- X. C. Zhou, W. Xing, C. P. Liu, and L. H. Lu, Electrochem. Commun., 9, 1469 (2007). https://doi.org/10.1016/j.elecom.2007.01.045
- Y. Zhu, Z. Khan, and R. I. Masel, J. Power Sources, 139, 15 (2005). https://doi.org/10.1016/j.jpowsour.2004.06.054
- W. S. Jung, J. H. Han, and S. Ha, J. Power Sources, 173, 53 (2007). https://doi.org/10.1016/j.jpowsour.2007.08.023
- R. Larsen, S. Ha, J. Zakzeski, and R. I. Masel, J. Power Sources, 157, 78 (2006). https://doi.org/10.1016/j.jpowsour.2005.07.066
- X. H. Xia and T. Iwasita, J. Electrochem. Soc., 140, 2559 (1993). https://doi.org/10.1149/1.2220862
- M. Arenz, V. Stamenkovic, P. N. Ross, and N. M. Markovic, Surf. Sci., 573, 57 (2005).
- R. Larsen and R. I. Masel, Electrochem. Solid State Lett., 7, A148 (2004). https://doi.org/10.1149/1.1707027
- S. Ha, C. Rice, R. I. Masel, and A. Wieckowski, J. Power Sources, 112, 655 (2002). https://doi.org/10.1016/S0378-7753(02)00453-6
- M. F. Mrozek, H. Luo, and M. J. Weaver, Langmuir, 16, 8463, (2000). https://doi.org/10.1021/la000760n
- Y. Pan, R. Zhang, and S. L. Blair, Electrochem. Solid-State Lett., 12, B23 (2009). https://doi.org/10.1149/1.3054278
- H. Miyake, T. Okada, G. Samjeske, and M. Osawa, Phys. Chem. Chem. Phys., 10, 3662 (2008). https://doi.org/10.1039/b805955a
- S. Uhm, S. T. Chung, and J. Lee, J. Power Sources, 178, 34 (2008). https://doi.org/10.1016/j.jpowsour.2007.12.016
- D. A. J. Rand and R. Woods, J. Electroanal. Chem., 31, 29 (1971). https://doi.org/10.1016/S0022-0728(71)80039-6
- A. G. Pavese, V. M. Solis, and M. C. Giordano, Electrochimi. Acta, 32, 1213 (1987). https://doi.org/10.1016/0013-4686(87)80037-3