Synthesis and Characterization of Doped Silicon Nanoparticles by a Solution Route

용액 공정을 통한 도핑된 실리콘 나노입자의 합성과 특성

  • Kwon, Ha-Young (Green Chemistry & Manufacturing System Division, Korea Institute of Industrial Technology (KITECH)) ;
  • Lim, Eun-Hee (Green Chemistry & Manufacturing System Division, Korea Institute of Industrial Technology (KITECH)) ;
  • Lee, Sung-Koo (Green Chemistry & Manufacturing System Division, Korea Institute of Industrial Technology (KITECH)) ;
  • Lee, Kyeong-K. (Green Chemistry & Manufacturing System Division, Korea Institute of Industrial Technology (KITECH))
  • 권하영 (한국생산기술연구원 청정생산기술연구부) ;
  • 임은희 (한국생산기술연구원 청정생산기술연구부) ;
  • 이성구 (한국생산기술연구원 청정생산기술연구부) ;
  • 이경균 (한국생산기술연구원 청정생산기술연구부)
  • Received : 2010.08.27
  • Accepted : 2010.10.04
  • Published : 2010.12.10

Abstract

We have synthesized boron (or phosphorous) doped silicon nanoparticles (Si-NPs) by a solution process. The surfaces of the Si-NPs were terminated with various alkyl groups to form a protecting layer. The Si-NPs were characterized by UV-Vis, PL, FTIR, and NMR. Through a microwave sintering process, the crystalline thin films of the Si-NPs were prepared by removing the surface alkyl groups. The TEM and SEM images reveal that contiguous films as large as $200{\mu}m$ in diameter were formed with a cubic structure. The electrical conductivity of the Si film was controlled by a doping type.

Acknowledgement

Grant : 산업원천기술개발사업의 비진공 공정을 이용한 Flexible 디스플레이 기술 개발 과제, 임무형 사업

Supported by : 지식경제부, 한국생산기술연구원

References

  1. T. I. Kamins, R. S. Williams, Y. Chen, Y. L. Chnag, and Y. A. Chang, Appl. Phys. Lett., 76, 562 (2000). https://doi.org/10.1063/1.125852
  2. R. Lechner, A. Stegner, R. Pereira, R. Dietmueller, M. Brandt, A. Ebbers, M. Trocha, H. Wiggers, and M. Stutzmann, J. Appl. Phys., 104, 053701 (2008). https://doi.org/10.1063/1.2973399
  3. J. R. Heath, Science, 258, 1131 (1992). https://doi.org/10.1126/science.258.5085.1131
  4. A. Kornowski, M. Giersig, R. Vogel, A. Chemseddine, and H. Weller, Adv. Mater., 5, 634 (1993). https://doi.org/10.1002/adma.19930050907
  5. J. P. Wilcoxon and G. A. Samara, Appl. Phys. Lett., 74, 3164 (1999). https://doi.org/10.1063/1.124096
  6. N. Shirahata, S. Furumi, and Y. Sakka, J. Cryst. Growth, 311, 634 (2009). https://doi.org/10.1016/j.jcrysgro.2008.09.084
  7. C. S. Yang, R. A. Bley, S. M. Kauzlarich, H. W. H. Lee, and G. R. Delgado, J. Am. Chem. Soc., 121, 5191 (1999). https://doi.org/10.1021/ja9828509
  8. T. W. Kim, C. H. Cho, B. H. Kim, and S. J. Park, Appl. Phys. Lett., 88, 123102 (2006). https://doi.org/10.1063/1.2187434
  9. R. K. Baldwin, K. A. Pettigrew, E. Ratai, M. P. Augustine, and S. M. Kauzlarich, Chem. Commun., 1822 (2002)
  10. B. Streetman, Solid State Elect. Devices, 4th Ed, 86, PRENTICE- HALL, Englewood cities Cliffs, New Jersey (1995).