Amperometric Kinetics of Hydrogen Peroxide Biosensor Bound with Natural Rubber

천연고무로 결합된 과산화수소 정량 바이오센서의 전류법 속도론

  • 유근배 (청주대학교 자연과학부) ;
  • 윤길중 (청주대학교 자연과학부)
  • Received : 2010.08.10
  • Accepted : 2010.09.24
  • Published : 2010.12.10

Abstract

When natural rubber dissolved in toluene comes into use as a binder of carbon powder, the volatilization of solvent just after the construction of biosensor brought the mechanical robustness on the paste. This characteristic satisfied the pre-requisite condition for the practical use of carbon paste electrode and a biosensor for the determination of hydrogen peroxide was designed. In order to evaluate its electrochemical qualitative and quantitative behaviors, various electrochemical kinetic parameters of the electrode, e.g. the symmetry factor (${\alpha}$, 0.37), the exchange current density ($i_0$, $0.075mAcm^{-2}$), the capacitance of double layer ($C_d$, $9.7{\times}10^{-3}F$), the time constant (${\tau}_A$, 0.92 s), the maximum current ($i_{max}$, $5.92{\times}10^{-7}Acm^{-2}$), the Michaelis constant ($K_M$, $1.99{\times}10^{-3}M$) and others were investigated. Results show that natural rubber is a promising binder of carbon powder.

References

  1. T. J. Cheng, T. M. Lin, and H. C. Chang, Anal. Chim. Acta, 462, 261 (2009).
  2. J. J. Roy, T. E. Abraham, K. S. Abijith, P. V. S. Kumar, and M. S. Thakur, Biosensors & Bioelectronics, 21, 206 (2005). https://doi.org/10.1016/j.bios.2004.08.024
  3. Y. C. Li, W. F. Bu, L. X. Wu, and C. Q. Sun, Sens. Acturators B, 107, 921 (2002).
  4. X. Chen, J. Z. Zhang, B. Q. Wang, G. C. Cheng, and S. J. Dong, Anal. Chim. Acta, 434, 255 (2001). https://doi.org/10.1016/S0003-2670(01)00830-3
  5. Y. F. Yang and S. L. Mu, Biosensors & Bioelectronics, 21, 74 (2005). https://doi.org/10.1016/j.bios.2004.08.049
  6. I. Vostiar, J. Tkac, E. Sturdik, and P. Gemeiner, Bioelectrochemistry, 56, 113 (2002). https://doi.org/10.1016/S1567-5394(02)00042-7
  7. S. A. Miscoria, G. D. Barrera, and G. A. Rivas, Sens. Acturators B, 115, 205 (2006). https://doi.org/10.1016/j.snb.2005.09.002
  8. A. S. Miguel, A. Merkoçi, and S. Alegret, Sens. Acturators B, 69, 153 (2000). https://doi.org/10.1016/S0925-4005(00)00536-0
  9. S. Tingry, C. Innocent, S. Touil, A. Deratani, and P. Seta, Mater. Sci. Eng. C, 26, 222 (2006). https://doi.org/10.1016/j.msec.2005.10.071
  10. K. J. Yoon, Bull. Kor. Chem. Soc., 25, 997 (2004). https://doi.org/10.5012/bkcs.2004.25.7.997
  11. J. Wang, J. W. Mo, S. F. Li, and J. Porter, Anal. Chim. Acta, 441, 183 (2001). https://doi.org/10.1016/S0003-2670(01)01116-3
  12. K. J. Yoon, K. J. Kim, and H. S. Kwon, J. Kor. Chem. Soc., 43, 271 (1999).
  13. K. J. Yoon, Anal. Sci. Tech., 16, 504 (2003).
  14. K. J. Yoon, J. Kor. Chem. Soc., 48, 654 (2004). https://doi.org/10.5012/jkcs.2004.48.6.654
  15. S. Y. Choi and K. J. Yoon, Elastomer, 41, 231 (2006).
  16. K. J. Yoon, Bull. Kor. Chem. Soc., 29, 2264 (2008). https://doi.org/10.5012/bkcs.2008.29.11.2264
  17. B. G. Lee, K. B. Rhyu, and K. J. Yoon, Bull. Kor. Chem. Soc., 30, 2457 (2009). https://doi.org/10.5012/bkcs.2009.30.10.2457
  18. B. G. Lee, K. B. Rhyu, and K. J. Yoon, J. Ind. Eng. Chem., 16, 340 (2010). https://doi.org/10.1016/j.jiec.2010.01.016
  19. M. Stevens, Polymer Chemistry, 3rd ed. p476, Oxford, New York USA (1999).
  20. J. A. Brydson, Rubbery Materials and Compounds, p70, Elsevier Applied Science, London and New York (1988).
  21. A. Mansouri, D. P. Makris, and P. Kepalas, J. Pham. Biochem. Anal., 39, 22 (2005). https://doi.org/10.1016/j.jpba.2005.03.044
  22. S. Svensson, A. C. Olin, M. Larstad, G. Ljungkvist, and K. Toren, J. Chromatogr. B, 809, 199 (2004). https://doi.org/10.1016/S1570-0232(04)00513-6
  23. M. Wu, Z. H. Lin, M. Schaferling, A. Durkop, and O. S. Wolfbeis, Anal. Biochem., 340, 66 (2005). https://doi.org/10.1016/j.ab.2005.01.050