The Effect of Lubricity Improvement by Biodiesel Components

바이오디젤 구성성분에 따른 윤활성향상 효과

  • Lim, Young-Kwan (Research Center, Korea Institute of Petroleum Management) ;
  • Park, So-Ra (Research Center, Korea Institute of Petroleum Management) ;
  • Kim, Jong-Ryeol (Research Center, Korea Institute of Petroleum Management) ;
  • Yim, Eui-Soon (Research Center, Korea Institute of Petroleum Management) ;
  • Jung, Choong-Sub (Research Center, Korea Institute of Petroleum Management)
  • 임영관 (한국석유관리원 연구센터) ;
  • 박소라 (한국석유관리원 연구센터) ;
  • 김종렬 (한국석유관리원 연구센터) ;
  • 임의순 (한국석유관리원 연구센터) ;
  • 정충섭 (한국석유관리원 연구센터)
  • Received : 2010.08.10
  • Accepted : 2010.09.10
  • Published : 2010.12.10

Abstract

Biodiesel produced from the reaction of methanol and triglyceride which is the main component of animal fats and vegetable oils is known for remarkable lubricity. In this study, the lubricity of 3 kinds of biodiesel came from vegetable oils such as soybean oil, palm oil, and perilla oil and 2 kind of biodiesel which were produced from beef tallow and pork lard were analyzed using HFRR (High frequency reciprocating rig). In HFRR test result, the lubricity of perilla and soybean's biodiesel was higher than other biodiesels. After analysis of biodiesel components by GC-MS and determination of the lubricity of pure biodiesel components using HFRR, it was found that a higher olefin content and long alkyl chaining biodiesel had an excellent lubricity property.

References

  1. C. S. Lee and S. W. Park, Fuel, 81, 2417 (2002). https://doi.org/10.1016/S0016-2361(02)00158-8
  2. K. Jung, J. Choi, S. Moon, and K. Chung, Journal of the KSTLE, 24, 264 (2008).
  3. W. Danping and H. A. Spikes, Wear, 119, 217 (1986).
  4. Business act for quality standard, inspection method and inspection fee of petroleum product, Ministry of Commerce, Industry and Energy 2006-42.
  5. S. Gryglewicz and F. A. Oko, Ind. Eng. Chem. Res., 44, 1640 (2005). https://doi.org/10.1021/ie049454l
  6. A. M. Omer, Renewable Sustainable Energy Rev., 12, 2265 (2008). https://doi.org/10.1016/j.rser.2007.05.001
  7. D. Antoni, V. V. Zverlow, and W. H. Schwarz, Appl. Microbiol. Biotechnol., 77, 23 (2007). https://doi.org/10.1007/s00253-007-1163-x
  8. C. S. Lee, S. W. Park, and S. I. Kwon, Energy Fuels, 19, 2201 (2008).
  9. Y. K. Lim, S. C. Shin, E. S. Yim, and H. O. Song, J. Korean Ind. Eng. Chem., 19, 137 (2008).
  10. Y. K. Hong and W. H. Hong, Korean Chem. Eng. Res., 45, 424 (2007).
  11. N. M. Ribeiro, A. C. Pinto, C. M. Quintella, G. O. da Rocha, L. S. G. Teixeira, L. L. N. Guarieiro, M. D. C. Rangel, M. C. C. Veloso, M. J. C. Rezende, R. S. da Cruz, A. M. de Oliveira, E. A. Torres, and J. B. de Andrade, Energy Fuels, 21, 2433 (2007). https://doi.org/10.1021/ef070060r
  12. F. Ma and M. A. Hanna, Bioresour. Technol., 70, 1 (1999). https://doi.org/10.1016/S0960-8524(99)00025-5
  13. http://www.global-greenhouse-warming.com/biodiesel-from-tallow.html
  14. J. Y. Park, D. K. Kim, J. P. Lee, S. C. Park, Y. J. Kim, and J. S. Lee, Bioresour. Technol., 99, 1196 (2008). https://doi.org/10.1016/j.biortech.2007.02.017
  15. G. Knothe and K. R. Steidley, Energy Fuels, 19, 1192 (2005). https://doi.org/10.1021/ef049684c
  16. Y. K. Lim, D. Kim, and E. S. Yim, J. Korean Ind. Eng. Chem., 20, 208 (2009).
  17. B. R. Moser, Energy Fuels, 22, 4301 (2008). https://doi.org/10.1021/ef800588x