Reduction of Volatile Organic Compounds Emitted from Automobile Felt by Activated Carbon and Hollow Core/Mesoporous Shell Carbon Ball

자동차용 팰트로부터 방출되는 휘발성 유기화합물의 저감 연구

  • 박승규 (호서대학교 화학공학과) ;
  • 김헌창 (호서대학교 화학공학과)
  • Received : 2010.10.26
  • Accepted : 2010.11.08
  • Published : 2010.12.10


Nano carbon balls (NCBs), activated carbons (ACs) and their mixture (new carbon mixtures, NCMs) were used to reduce volatile organic compounds (VOCs) emitted from the automobile felt. The optimum analytical method to measure the trace amount of the VOCs, including formaldehyde and acetaldehyde, has been established by utilizing high performance liquid chromatography (HPLC) and gas chromatography (GC). The levels of formaldehyde and acetaldehyde released from newly produced felt were in the ranges of 0.3~6.0 ppm and 0.2~3.0 ppm, respectively. After 14 days of aging at the room temperature, however, their levels were still in the ranges of 0.2~0.5 ppm and 0.2~0.4 ppm, respectively. By applying NCMs of 2 wt% to the automobile felt, the amount of the total volatile organic compounds (TVOCs) was reduced under the chronic inhalation minimum risk level of $0.32mmmm{\mu}g/TP$.


Supported by : Hoseo University


  1. K. L. Foster, R. G. Fuerman, J. Economy, S. M. Larson, and M. J. Rood, Chem. Mater., 4, 1068 (1992).
  2. R. S. Guerrero and A. Sayari, Environ. Sci. Technol., 41, 4761 (2007).
  3. M. E. Davis, A. P. Blicharz, J. E. Hart, F. Laden, E. Garshick, and T. J. Smith, Environ. Sci. Technol., 41, 7152 (2007).
  4. T. Schupp, H. M. Bolt, and J. G. Hengstler, Toxicology, 206, 461 (2005).
  5. J. E. Amoore and E. Hautala, J. Appl. Toxicol., 3, 272 (1983).
  6. M. Krzyzanowski, J. J. Quackenboss, and M. D. Lebowitz, Environ. Res., 52, 117 (1990).
  7. B. N. Tam and C. M. Neumann, J. Environ. Manage., 73, 131 (2004).
  8. JAMA Press Releases (, March 31 (2006).
  9. T. Hayashi, M. Kumita, and Y. Otani, J. Chem. Eng., Jpn., 32, 72 (2006).
  10. T. Hayashi, M. Kumita, and Y. Otani, Environ. Sci. Technol., 39, 5436 (2005).
  11. M. Sugiura and K. Fukumoto, J. Mater. Sci., 29, 682 (1994).
  12. L. Jing, L. Zhong, L. Bing, X. Qibin, and X. Hongxia, Chin. J. Chem. Eng., 16, 871 (2008).
  13. N. Ozturk and T. M. Bektas, J. Hazard. Mater. B, 12, 1555 (2004).
  14. X. S. Zhao, Q. Ma, and G. Q. Lu, Energy Fuels, 12, 1051 (1998).
  15. S. Carlos-Cuellar, P. Li, A. P. Christensen, B. J. Krueger, C. Burrichter, and V. H. Grassian, J. Phys. Chem. A, 107, 2350 (2003).
  16. M. P. Cal, M. J. Rood, and S. M. Larson, Energy Fuels, 11, 311 (1997).
  17. A. Stein, Z. Wang, and M. A. Fierke, Adv. Mater., 20, 1 (2008).
  18. K. Kosuge, S. kubo, N. Kikukawa, and M. Takemori, Langmuir, 23, 3095 (2007).
  19. J. Yang, T. T. Zhuang, F. Wei, Y. Zhou, Y. Cao, Z. Y. Wu, Z. J. H. Zhu, and C. Liu, J. Hazard. Mater., 162, 866 (2009).
  20. S. O. Lee, S. J. Kitchin, K. D. M. Harris, G. Sankar, M. Dugal, and J. M. Thomas, J. Phys. Chem. B, 106, 1322 (2002).
  21. S. B. Yoon, K. N. Sohn, J. Y. Kim, C. H. Shin, J. S. Yu, and T. H. Hyeon, Adv. Mater., 14, 19 (2002).<19::AID-ADMA19>3.0.CO;2-X
  22. S. B. Yoon, J. Y. Kim, J. H. Kim, Y. J. Park, K. R. Yoon, S. K. Park, and J. S. Yu, J. Mater. Chem., 17, 1758 (2007).
  23. Y. Kim, S. B. Yoon, and J. S. Yu, Chem. Commun., 21, 790 (2003).
  24. J. K. Lee, S. Y. Han, S. K. Park, Y. K. Park, and C. W. Lee, Korean J. Chem. Eng., 22, 42 (2005).