Thermal Plasma Synthesis of Nano Composite Particles

열플라즈마에 의한 복합 나노 입자 제조

  • 정민희 (호서대학교 화학공학과) ;
  • 김헌창 (호서대학교 화학공학과)
  • Received : 2010.10.22
  • Accepted : 2010.10.27
  • Published : 2010.12.10

Abstract

Nano composite particles were synthesized from a bulk ZrVFe alloy ingot by transferred DC thermal plasma. Effects of plasma gas flow rate on the characteristics of the produced nano composite particles were investigated. The characteristics of the synthesized powder were analyzed by field scanning electron microscopy (FE-SEM), light scattering particle size analyzer (PSA), energy dispersive X-ray spectroscopy (EDS), X-ray diffractometer (XRD), and Brunauer-Emmett-Teller (BET) surface area analyzer. As the flow rate of plasma gas increased from 20 L/min to 40 L/min, the average particle size decreased from 91 nm to 55 nm, the particle size distribution became narrower, the surface area increased from $200\;m^2/g$ to $255\;m^2/g$, the particle composition was nearly unaffected, and the particle crystallinity was improved.

References

  1. W. B. Choi, B. K. Ju, Y. H. Lee, S. J. Jeong, N. Y. Lee, M. Y. Sung, and M. H. Oh, J. Electrochem. Soc., 146, 400 (1999). https://doi.org/10.1149/1.1391621
  2. G. Chakhovskoi, C. E. Hunt, and M. E. Malinowski, Displays, 19, 179 (1999). https://doi.org/10.1016/S0141-9382(98)00048-1
  3. R. Chalamala, D. Uebelhoer, and K. A. Dean, J. Vac. Sci. Technol. A, 18, 343 (2000). https://doi.org/10.1116/1.582190
  4. D. Petti, M. Cantoni, M. Leone, R. Bertacco, and E. Rizzi, Appl. Surf. Sci., 256, 6291 (2010). https://doi.org/10.1016/j.apsusc.2010.04.006
  5. P. Roupcová and O. Schneeweiss, J. Alloys Compd., 492, 160, (2010). https://doi.org/10.1016/j.jallcom.2009.11.147
  6. W. Liu, D. Wu, and J. Yang, Int. J. Mater. Prod. Tech., 37, 297 (2010). https://doi.org/10.1504/IJMPT.2010.031429
  7. H. Y. Koo, J. H. Yi, and Y. C. Kang, J. Alloys Compd., 489, 456 (2010). https://doi.org/10.1016/j.jallcom.2009.09.084
  8. S. Oh and S. Lee, J. Nanosci. Nanotechnol., 10, 366 (2010). https://doi.org/10.1166/jnn.2010.1544
  9. X. Xi, X. Xu, Z. Nie, S. He, W. Wang, J. Yi, and Z. Tieyong, Int. J. Refract. Met. Hard Mater., 28, 301 (2010). https://doi.org/10.1016/j.ijrmhm.2009.10.014
  10. C. A. Crouse, E. Shin, P. T. Murray, and J. E. Spowart, Mater. Lett., 64, 271 (2010). https://doi.org/10.1016/j.matlet.2009.10.060
  11. L. H. Bac, Y. S. Kwon, J. S. Kim, Y. I. Lee, D. W. Lee, and J. C. Kim, Mater. Res. Bull., 45, 352 (2010). https://doi.org/10.1016/j.materresbull.2009.12.008
  12. A. J. Song, M. Z. Ma, W. G. Zhang, H. T. Zong, S. X. Liang, Q. H. Hao, R. Z. Zhou, Q. Jing, and R. P. Liu, Mater. Lett., 64, 1229 (2010). https://doi.org/10.1016/j.matlet.2010.02.061