Partial Oxidation of Methane to $H_2$ Over Pd/Ti-SPK and Pd/Zr-SPK Catalysts and Characterization

Pd/Ti-SPK과 Pd/Zr-SPK 촉매상에서 수소 생산을 위한 메탄의 부분산화반응과 촉매의 특성화

  • Seo, Ho-Joon (Division of Biotechnology and Chemical Engineering, Chonnam National University) ;
  • Kang, Ung-Il (Faculty of Applied Chemical Engineering, Chonnam National University)
  • 서호준 (전남대학교 생명화학공학부) ;
  • 강웅일 (전남대학교 응용화학공학부)
  • Received : 2010.08.23
  • Accepted : 2010.09.13
  • Published : 2010.12.10

Abstract

Catalytic activities of the partial oxidation of methane (POM) to hydrogen were investigated over Pd(5)/Ti-SPK and Pd(5)/Zr-SPK in a fixed bed flow reactor (FBFR) under atmosphere, and the catalysts were characterized by BET, XPS, XRD. The BET surface areas, pore volume and pore width of Horvath-Kawaze, micro pore area and volume of t-plot of Pd(5)/Ti-SPK and Pd(5)/Zr-SPK were $284m^2/g$, $0.233cm^3/g$, 3.9 nm, $30m^2/g$, $0.015cm^3/g$ and $396m^2/g$, $0.324cm^3/g$, 3.7nm, $119m^2/g$, $0.055cm^3/g$, repectively. The nitrogen adsorption isotherms were type IV with hysteresis. XPS showed that Si 2p and O 1s core electronlevels of Ti-SPK and Zr-SPK substituted Ti and Zr shifted to slightly lower binding energies than SPK. The oxidation states of Pd on the surface of catalysts were $Pd^0$ and $Pd^{+2}$. XRD patterns showed that crystal structures of fresh catalyst changed amorphous into crystal phase after reaction. The conversion and selectivity of POM to hydrogen over Pd(5)/Ti-SPK and Pd(5)/Zr-SPK were 77, 84% and 78, 72%, respectively, at 973 K, $CH_4/O_2$ = 2, GHSV = $8.4{\times}10^4mL/g_{cat}{\cdot}h$ and were kept constant even after 3 days in stream. These results confirm superior activity, thermal stability, and physicochemical properties of catalyst in POM to hydrogen.

Acknowledgement

Supported by : 전남대학교

References

  1. F. Sadi, D. Duprez, G. Francois, and A. Miloudi, J. Catal., 213, 226 (2003). https://doi.org/10.1016/S0021-9517(02)00080-5
  2. P. S. Maiya, T. J. Anderson, R. L. Mieville, J. T. Dusek, and J. J. Picciolo, U. Balachandran, Appl. Catal. A: General, 196, 65 (2000). https://doi.org/10.1016/S0926-860X(99)00455-X
  3. F.-J. Spiess, S. L. Suib, K. Irie, Y. Hayashi, and H. Matsumoto, Catal. Today, 89, 35 (2004). https://doi.org/10.1016/j.cattod.2003.11.043
  4. H. J. Seo and E. Y. Yu, J. Ind. Eng. Chem., 11, 681 (2005).
  5. J.-P. Shen and C. Song, Catal. Today, 77, 89 (2002). https://doi.org/10.1016/S0920-5861(02)00235-3
  6. Y. Hara, N. Minami, H. Matsumoto, and H. Itagaki, Appl. Catal. A: General, 332, 289 (2007). https://doi.org/10.1016/j.apcata.2007.08.030
  7. P. M. Urban, A. Funke, J. T. Műller, M. Himmen, and A. Docter, Appl. Catal. A: General, 221, 459 (2001). https://doi.org/10.1016/S0926-860X(01)00819-5
  8. T.-J. Huang and S.-Y. Jhao, Appl. Catal. A: General, 302, 325 (2006). https://doi.org/10.1016/j.apcata.2006.02.027
  9. S. J. Lee, J. H. Jun, S.-H. Lee, K. J. Yoon, T. H. Lim, S.-W. Nam, and S.-A. Hong, Appl. Catal. A: General, 230, 61 (2002). https://doi.org/10.1016/S0926-860X(01)00995-4
  10. T. Utaka, K. Sekizawa, and K. Eguchi, Appl. Catal. A: General, 194, 21 (2000). https://doi.org/10.1016/S0926-860X(99)00349-X
  11. S. Cimino, L. Lisi, R. Pirone, G. Russo, and M. Turco, Catal. Today, 59, 19 (2000). https://doi.org/10.1016/S0920-5861(00)00269-8
  12. A. J. Zarur and J. Y. Ying, Nature, 403, 66 (2000).
  13. D. P. Serrano, J. A. Botas, J. L. G. Fierro, R. Guil-Lopez, P. Pizarro, and G. Gomez, Fuel, 89, 1241 (2010). https://doi.org/10.1016/j.fuel.2009.11.030
  14. O.-Y Kwon, H.-S. Shin, and S.-W. Choi, Chem. Mater., 12, 1273 (2000). https://doi.org/10.1021/cm990531q
  15. O.-Y Kwon and S.-W. Choi, Bull. Korean Chem. Soc., 20, 69 (1999).
  16. K.-W. Park, J. H. Jung, H.-J. Seo, and O.-Y. Kwon, Micro and Meso. Mater., 121, 219 (2009). https://doi.org/10.1016/j.micromeso.2009.02.002
  17. F. Boccuzzi, A. Chiorino, M. Manzoli, D. Andreeva, T. Tabakova, L. Ilieva, and V. Iadakiev, Catal. Today, 75, 169 (2002). https://doi.org/10.1016/S0920-5861(02)00060-3
  18. V. R. Choudhary, S. Banerjee, and A. M. Rajput, Appl. Catal. A: General, 234, 259 (2002). https://doi.org/10.1016/S0926-860X(02)00232-6
  19. G. C. Bond, Heterogeneus Catalysis, 2nd ed., 12, Oxford, New York (1987).
  20. Z. X. Liu, Q. X. Bao, and N. J. Wu, J. Catal., 113, 45 (1988). https://doi.org/10.1016/0021-9517(88)90236-9
  21. A. Bueno-Lopez, K. Krishna, M. Makkee, and J. A. Moulijn, J. Catal., 230, 237 (2005). https://doi.org/10.1016/j.jcat.2004.11.027
  22. A. M. Efstathiou, D. Papageorgiou, and X. E. Verykios, J. Catal., 141, 612 (1993). https://doi.org/10.1006/jcat.1993.1168
  23. B. M. Reddy, B. Chowdhury, E. P. Reddy, and A. Fernandez, Appl. Catal. A: General, 213, 279 (2001). https://doi.org/10.1016/S0926-860X(00)00906-6
  24. A. M. Venezia, A. Rossi, D. Duca, A. Martorana, and G. Deganello, Appl. Catal. A: General, 125, 113 (1995). https://doi.org/10.1016/0926-860X(94)00286-X
  25. X. Li, Y. Zhang, and K. J. Smith, Appl. Catal. A: General, 264, 81 (2004). https://doi.org/10.1016/j.apcata.2003.12.031