Preparation and Characterization of O-Carboxymethyl Chitosan Ion-complexed Poly(L-Lysine) for Drug and Gene Delivery System

약물 및 유전자 전달체로 응용하기 위한 Poly(L-Lysine)이 결합된 O-Carboxymethyl Chitosan PEG의 제조와 특성

  • Nam, Joung-Pyo (Department of Polymer Science and Engineering, Sunchon National University) ;
  • Kim, Young-Min (Department of Polymer Science and Engineering, Sunchon National University) ;
  • Park, Jin-Su (Department of Polymer Science and Engineering, Sunchon National University) ;
  • Lee, Eung-Jae (Department of Bioenvironmental & Chemical Engineering, Chosun College University of Science & Technology) ;
  • Choi, Chang-Yong (Department of Polymer Science and Engineering, Sunchon National University) ;
  • Jang, Mi-Kyeong (Department of Polymer Science and Engineering, Sunchon National University) ;
  • Nah, Jae-Woon (Department of Polymer Science and Engineering, Sunchon National University)
  • 남정표 (순천대학교 공과대학 고분자공학과) ;
  • 김영민 (순천대학교 공과대학 고분자공학과) ;
  • 박진수 (순천대학교 공과대학 고분자공학과) ;
  • 이응재 (조선이공대학 생명환경화공과) ;
  • 최창용 (순천대학교 공과대학 고분자공학과) ;
  • 장미경 (순천대학교 공과대학 고분자공학과) ;
  • 나재운 (순천대학교 공과대학 고분자공학과)
  • Received : 2010.08.13
  • Accepted : 2010.10.14
  • Published : 2010.12.10

Abstract

O-carboxymethyl water-soluble chitosan (OCMCh) prepared for enhance the application of chitosan was modified with mthoxy polyethyleneglycol (mPEG) by ion-complex for long circulation in the blood. OCMCh-PEG-PLLs was prepared by forming ion-complex with OCMCh-PEG and Poly(L-Lysine) (PLL) for drug and gene delivery system. The physicochemcal characterisitcs of OCMCh-PEG-PLLs were investigated by FT-IR, $^1H$-NMR. These results showed that CMCh-PEG-PLLs were successfully syntehsized by ion-complex. Particle size distribution and zeta potential of the OCMCh-PEG-PLLs were determined using dynamic light scattering technique. Transmission electron microscopy (TEM) was also used to observe the morphology of the OCMCh-PEG-PLLs. OCMCh-PEG-PLLs have spherical shapes with particle size 290∼390 nm. OCMCh-PEG-PLLs were showed when the feeding amount of mPEG ratio was increased, particle size and zeta potential were decreased. Based on these results, it is possible to introduction of the OCMCh-PEG-PLLs into various biomedical fields such as drug and gene delivery system.

References

  1. X. Y. Wu and P. I. Lee, J. Appl. Polym. Sci., 77, 833 (2000). https://doi.org/10.1002/(SICI)1097-4628(20000725)77:4<833::AID-APP17>3.0.CO;2-4
  2. Q. Li, E. T. Dunn, E. W. Gradmaison, and M. F. A. Goosen, Journal of Bioactive and Compatible Polymers, 7, 370 (1992). https://doi.org/10.1177/088391159200700406
  3. S. Miyazaki, K. Ishii, and T. Nadai, Chem. Pharm. Bull., 29, 3067 (1981). https://doi.org/10.1248/cpb.29.3067
  4. Y. Kawashima, S. Y. Lin, Kasai, A. T. Handam, and H. Takenaka, Chem. Pharm. Bull., 33, 2107 (1985). https://doi.org/10.1248/cpb.33.2107
  5. J. Berger, M. Reist, A. Chenitem, O. F. Baeyens, J. M. Mayer, and R. Gurny, Int. J. Pharmaceutics, 288, 0378 (2004).
  6. E. R. Gariepy, M. Shive, A. Bichara, M. Berrada, D. L. Garrec, A. Chenite, and J. C. Leroux, Eur. J. Pharm. Biopharm., 57, 53 (2004). https://doi.org/10.1016/S0939-6411(03)00095-X
  7. Y. Sawayanagi, N. Nambu, and T. Naggi, Chem. Pharm. Bull., 31, 2507 (1983). https://doi.org/10.1248/cpb.31.2507
  8. J. W. Nah and M. K. Jang, J. Polym. Sci. Part A : Polym. Chem., 40, 3796 (2002). https://doi.org/10.1002/pola.10463
  9. A. P. Zhu, M. Zhang, and Z. Zhang, Polym. Int., 53, 15 (2004). https://doi.org/10.1002/pi.1275
  10. K. Y. Cai, K. D. Yao, L. I. Yang, Z. M. Yang, and X. Q. Li, J. Biomater. Sci., Polym. Ed., 12, 1303 (2001). https://doi.org/10.1163/156856202753419240
  11. J. Ragnhild, N. Hjerde, and K. M. Varum, Carbohydr. Polym., 34, 131 (1997). https://doi.org/10.1016/S0144-8617(97)00113-6
  12. J. M. Harris, New York : Plenum Press., 22, 371 (1992).
  13. J. M. Harris and S. Zalipsky, American Chemical Society, 12, 489 (1997).
  14. K. D Park and S. W. Kim, NY, Plenum Publications, 14, 283 (1992).
  15. J. H. Lee, J. Kopecek, and J. D. Andrade, J. Biomed. Mater. Res., 23, 351 (1989). https://doi.org/10.1002/jbm.820230306
  16. Y. Mori and S. Nagaoka, Trans. Am. Soc. Artif. Intern. Organs., 28, 459 (1982).
  17. N. P. Desai and A. Hubbell, J. Biomed. Mater. Res., 25, 829 (1991). https://doi.org/10.1002/jbm.820250704
  18. S. Jeon and J. Andrade, J. Colloid Interface Sci., 142, 159 (1991). https://doi.org/10.1016/0021-9797(91)90044-9
  19. NEKTAR therapeutics Co, Catalogue Nektar Advance PEGylation (2005-2006).
  20. F. M. Veronese and J. M. Harris, Adv. Drug Deliv. Rev., 54, 453 (2002). https://doi.org/10.1016/S0169-409X(02)00020-0
  21. F. M. Veronese, C. Monfardin, P. Caliceti, O. Schiavon, M. D. Scrawen, and D. Beer, J. Control. Rel., 40, 199 (1996). https://doi.org/10.1016/0168-3659(95)00185-9
  22. M. A. Wolfert, P. R. Dash, O. Nazarova, D. Oupicky, L. W. Seymour, S. Smart, J. Strohalm, and K. Ulbrich, Bioconfug. Chem., 10, 993 (1999). https://doi.org/10.1021/bc990025r
  23. M. Sela and E. Katchalski, Adv. Protein Chem., 14, 391 (1959). https://doi.org/10.1016/S0065-3233(08)60614-2
  24. J. P. Nam, D. G. Kim, Y. B. Kim, Y. I. Jeong, M. K. Jang, and J. W. Nah, J. Chitin Chitosan., 13, 105 (2008).
  25. J. P. Nam, J. K. Park, C. Y. Choi, Y. K. Park, M. K. Jang, and J. W. Nah, J. Chitin Chitosan., 15, 12 (2010).