The Study for Synthesis and Characteristic of ${\alpha},{\beta}$-tetra(phenoxy, 2-naphthoxy, 4-tritylphenoxy) Oxovanadium Phthalocyanine Derivatives

${\alpha},{\beta}$-tetra(phenoxy, 2-naphthoxy, 4-tritylphenoxy) Oxovanadium 프탈로시아닌 유도체의 합성 및 특성에 관한 연구

  • Son, Dae-Hee (CFC Teramate Co. Ltd.) ;
  • Heo, Jin (CFC Teramate Co. Ltd.) ;
  • Kim, Song-Hyuk (Division of Applied Chemical Engineering, Pukyong National University) ;
  • Lee, Seung-Ho (Composite Materials Center, Korea Institute of Ceramic Eng. & Tech.) ;
  • Lee, Gun-Dae (Division of Applied Chemical Engineering, Pukyong National University) ;
  • Hong, Seong-Soo (Division of Applied Chemical Engineering, Pukyong National University) ;
  • Park, Seong-Soo (Division of Applied Chemical Engineering, Pukyong National University)
  • 손대희 ((주) CFC Teramate) ;
  • 허진 ((주) CFC Teramate) ;
  • 김송혁 (부경대학교 응용화학공학부) ;
  • 이승호 (한국세라믹기술원 복합재료센타) ;
  • 이근대 (부경대학교 응용화학공학부) ;
  • 홍성수 (부경대학교 응용화학공학부) ;
  • 박성수 (부경대학교 응용화학공학부)
  • Received : 2010.07.29
  • Accepted : 2010.09.27
  • Published : 2010.12.10

Abstract

After phthalonitrile derivatives were synthesized by the introduction of phenoxy, 2-naphthoxy or 4-trityl phenoxy group on ${\alpha}$- and ${\beta}$-position, oxovanadyl phthalocyanine (VOPc) derivatives containing electron-rich substituent group at different position were synthesized successfully in this investigation. The chemical structure of samples was determined by the means of $^1H$-NMR, MALDI-TOF mass spectroscopy, and FT-IR spectrometer. Also, optical and chemical properties were determined by the means of UV-Vis spectrometer, X-ray diffractometry, and thermo gravimetry. It was found that the maximum absorbing wavelength of VOPc derivatives ranged from 684 to 726 nm. Also, their solubility and Q-band were enhanced and shifted by the introduction of substitute group, respectively.

Acknowledgement

Grant : 소재원천기술개발사업

Supported by : 지식경제부, Brain Busan 21

References

  1. G. Schmid, M. Sommerauer, M. Geyer, and M. Hanack, Phthalocyanines: Properties and Applications, ed. C. C. Leznoff, and A. B. P. Lever, 4, 1, Wiley-VCH Press, New York (1989).
  2. K. Kasuga and M. Tsutsui, Coord. Chem. Rev., 32, 67 (1980). https://doi.org/10.1016/S0010-8545(00)80370-7
  3. Pthalocyanine Research and Applications, ed. A. L. Thomas, 5, CRC Press, Fla (1990).
  4. The Porphyrin Handbook, ed. K. M. Kadish, K. M. Smith, and R. Guilard, 16, Academic Press, New York (2003).
  5. C. S. Frampton, J. M. O'Conner, J. Retevson, and J. Silver, Displays, 174 (1988).
  6. A. Gurek, V. Ahsen, A. Gul, and O. Bekaroglu, J. Chem. Soc., Dalton Trans., 3367 (1991).
  7. M. Emmelius, G. Pawlowski, and H. W. Vollman, Angew Chem Int., 28, 1445, (1989). https://doi.org/10.1002/anie.198914453
  8. Phthalocyanine Materals: Synthesis, Structure and Function, ed. N. B. Mckeownn, Cambridge Univ. Press, Cambridge (1998).
  9. R. M. Christie, Dyes & Pigments, 27, 35 (1995). https://doi.org/10.1016/0143-7208(94)00047-6
  10. Electronic Spectra of Phthalocyanines and Related Compounds, ed. E. A. Luk'yanets, NIOPIK Press, Moscow (1989).
  11. C. H. Griffiths, Mol. Cryst. Liq. Cryst., 33, 149 (1979).
  12. R. F. Ziolo and C. H. Grifiths, J. Chem. Soc., Dalton Trans., 11, 2300 (1980).
  13. J. Simon and J. J. Andre, Molecular Semiconductors, ed. J. M. Lehn and C. W. Rees, Springer-Verlag, Berlin (1985).
  14. B. S. In, Phthalocyanines: Properties and Applications, ed. C. C. Leznoff and A. B. P. Lever, 3, 119, Wiley-VCH Press, New York (1993).
  15. M. Hanack and P. Haisch, Synthesis, 1251 (1995).
  16. N. Kobayashi, H. Ogata, N. Nonaka, and E. A. Luk'yanets, Chem. Eur. J., 9, 5123 (2003). https://doi.org/10.1002/chem.200304834
  17. J. H. Park, MS Thesis, Pukyoung National University, Busan, Korea (2007).
  18. R. D. George and A. W. Snow, J. Heterocyclic Chem., 32, 495, (1995). https://doi.org/10.1002/jhet.5570320219
  19. J. G. Young and W. Onyebuagu, J. Org. Chem., 55, 2155 (1990). https://doi.org/10.1021/jo00294a032
  20. M. Handa and K. Sogabe, Inorganica Chimica, 41, 230 (1995).