Preparation of Anion Exchange Membranes of Cross-linked Poly((vinylbenzyl)trimethylammonium chloride-2-hydroxyethyl methacrylate)/Poly(vinyl alcohol)

가교결합한 Poly((vinylbenzyl)trimethylammonium chloride-2-hydroxyethyl methacrylate)/poly(vinyl alcohol) 음이온 교환막 제조

  • Kim, Mi-Yang (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Kim, Kwang-Je (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Kang, Ho (Department of Environmental Engineering, Chungnam National University)
  • 김미양 (한국화학연구원 화학소재연구단) ;
  • 김광제 (한국화학연구원 화학소재연구단) ;
  • 강호 (충남대학교 환경공학과)
  • Received : 2010.07.13
  • Accepted : 2010.08.24
  • Published : 2010.12.10

Abstract

Anion exchange membranes can be used for reverse electrodialysis for electric energy generation, and capacitive deionization for water purification, as well as electrodialysis for desalination. In this study, anion exchange membranes of poly((vinylbenzyl) trimethylammonium chloride-2-hydroxyethyl methacrylate)/poly(vinyl alcohol) were prepared through the polymerization of (vinylbenzyl)trimethylammonium chloride and 2-hydroxyethyl methacrylate in aqueous poly(vinyl alcohol) solutions, esterification with glutaric acid, and cross-linking reaction with glutaraldehyde. We investigated electrochemical properties for the anion exchange membranes prepared according to experimental conditions. Ion exchange capacity and electrical resistance for the membranes were changed with a variation in the monomer ratio in polymerization. Water uptake and conductivity for the membranes decreased with an increase in the content of glutaric acid in esterification. The change in the time of crosslinking reaction with the formed film and glutaraldehyde affected electrochemical properties such as water uptake, conductivity, or transport number for the membranes. Chronopotentiometry and limiting current density for the anion exchange membranes prepared were measured.

References

  1. T. Xu, J. Membr. Sci., 263, 1 (2005). https://doi.org/10.1016/j.memsci.2005.05.002
  2. C. Huang, T. Xu, Y. Zhang, Y. Xue, and G. Chen, J. Membr. Sci., 288, 1 (2007). https://doi.org/10.1016/j.memsci.2006.11.026
  3. M. Turek and B. Bandura, Desalination, 205, 67 (2007). https://doi.org/10.1016/j.desal.2006.04.041
  4. P. Dlugolecki, K. Nymeijer, S. Metz, and M. Wessling, J. Membr. Sci., 319, 214 (2008). https://doi.org/10.1016/j.memsci.2008.03.037
  5. C. M. Yang, W. H. Choi, B. W. Cho, W. I. Cho, K. S. Yun, and H. S. Han, J. Korean Ind. Eng. Chem., 15, 294 (2004).
  6. C. J. Gabelich, T. D. Tran, and I. H. M. Suffet, Environ. Sci. Technol., 36, 3010 (2002). https://doi.org/10.1021/es0112745
  7. Y. J. Kim and J. H. Choi, Appl. Chem. Eng., 21, 87 (2010).
  8. J. B. Lee, K. K. Park, H. M. Eum, and C. W. Lee, Deslaination, 196, 125 (2006). https://doi.org/10.1016/j.desal.2006.01.011
  9. Y. Tanaka, Ion Exchange Membranes: Fundamentals and Applications. Membrane Sience and Technology Series, 12, Elsevier, Amsterdam (2007).
  10. J. S. Lee, M. C. Yoo, B. J. chang, J. H. Kim, H. Kang, and S. B. Lee, Membr. J., 18, 138 (2008).
  11. B. S. Kim, M. Kim, K. B. Heo, J. H. Hong, W. J. Na, and J. H. Kim, J. Korean Ind. Eng. Chem., 17, 303 (2006).
  12. T. S. Hwang, S. A. Lee, and M. J. Lee, J. Korean Ind. Eng. Chem., 12, 504 (2001).
  13. S. M. Kolhe and A. Kumur, Radiat. Phys. Chem., 76, 901 (2007). https://doi.org/10.1016/j.radphyschem.2006.09.004
  14. S. I. Chung, C. H. Ryu, A. S. Kang, and H. S. Lee, J. Korean Ind. Eng. Chem., 14, 95 (2003).
  15. M. S. Kang. Y. J. Choi, and S. H. Moon, J. Membr. Sci., 207, 157 (2002). https://doi.org/10.1016/S0376-7388(02)00172-2
  16. P. Dlugolecki, B. Anet, S. J. Metz, K. Nijmeijer, and M. Wessling, J. Membr. Sci., 346, 163 (2010). https://doi.org/10.1016/j.memsci.2009.09.033
  17. J. H. Choi and S. H. Moon, J. Membr. Sci., 191, 225 (2001). https://doi.org/10.1016/S0376-7388(01)00513-0
  18. J. H. Choi, S. H. Kim, and S. H. Moon, J. Colloid Interface Sci., 241, 120 (2001). https://doi.org/10.1006/jcis.2001.7710