A Study of Ozonation Characteristics of Bis(2-chloroethyl) Ether

Bis(2-chloroethyl) Ether (BCEE)의 오존산화 특성에 관한 연구

  • Lee, Cheal-Gyu (Department of Environmental Engineering, Chongju University) ;
  • Kim, Moon-Chan (Department of Environmental Engineering, Chongju University)
  • 이철규 (청주대학교 이공대학 환경공학부) ;
  • 김문찬 (청주대학교 이공대학 환경공학부)
  • Received : 2010.06.16
  • Accepted : 2010.08.24
  • Published : 2010.12.10

Abstract

In this study ozonation of bis(2-chloroethyl) ether (BCEE) in aqueous solution was performed in a laboratory scale batch reacter. The ozonation process of BCEE was carried out by bubbling ozone at the bottom of reactor containing the BCEE solution. Ozonation was almost complete after 80 min with an ozone concentration of $50{\pm}10mg/L$. Ozonation treatment efficiencies of BCEE were evaluated in terms of $BOD_5$, $COD_{Cr}$, and TOC. In the ozonation of BCEE a 62.79% decrease of the $COD_{Cr}$ and a 57.25% decrease of the TOC lead to biodegradable by-products ($BOD_5/COD_{Cr}$ = 0.39). The results of this research show that wastewaters containing non-biodegradable compounds, such as BCEE can be successfully treated by ozonation followed by bio-treatment. The pseudo first-order rate constants of the ozonation was $2.00{\times}10^{-4}sec^{-1}$ and the activation energy was $10.02kcal{\cdot}mol^{-1}$ at $30^{\circ}C$.

References

  1. ATSDR (Agency for Toxic Substances and Disease Registry), Toxicological profile for Bis (2-chloroethyl) ether, (2009). Available from: http://www.atsdr.cdc.gov/toxprofiles/tp127.html.
  2. R. V. Thomann, Environ. Health Persp., 103, 53 (1995). https://doi.org/10.1289/ehp.95103s453
  3. A. J. Bender, R. A. Kirgan, R. A. Karn, B. Danovan, M. F. Mohn, and D. M. Sirkis, J. Hazard. Mat., 168, 1041 (2009). https://doi.org/10.1016/j.jhazmat.2009.02.138
  4. M. Kaludjerski and M. D. Gurol, Water Res., 38, 1595 (2004). https://doi.org/10.1016/j.watres.2003.11.037
  5. USEPA (U.S. Environmental Protection Agency), Integrated Risk Information System (IRIS) on Bis(2-Chloroethyl)Ether. National Center for Environmental Assessment, Office of Research and Development, Washington, DC. (1999). Available from: http://www.epa. gov/iris/subst/0137.htm
  6. F. Y. C. Huang, K. Y. Li, and C. C. Liu, Environ. Prog., 18, 55 (1999). https://doi.org/10.1002/ep.670180121
  7. A. Christensen, M. D. Gurol, and T. Garoma, Water Res., 43, 3910 (2009). https://doi.org/10.1016/j.watres.2009.04.009
  8. M. D. M. Mutuc, N. G. Love, and P. J. Vikesland, Chemosphere, 70, 1390 (2008). https://doi.org/10.1016/j.chemosphere.2007.09.061
  9. T. Garoma and M. D. Gurol, Environ. Sci. Technol., 38, 5246 (2004). https://doi.org/10.1021/es0353210
  10. J. L. Acero, S. B. Haderlein, T. C. Schmidt, M. J. F. Suter, and U. von Gunten, Environ. Sci. Technol., 35, 4252 (2001). https://doi.org/10.1021/es010044n
  11. K. Y. Li, C. C. Liu, Q. Ni, Z. F. Liu, F. Y. C. Huang, and J. A. Colapret, Ind. Eng. Chem. Res., 34, 1960 (1995). https://doi.org/10.1021/ie00045a005
  12. Z. Shiyun, Z. Xuesong, and L. Daotang, Water Res., 37, 1185 (2003). https://doi.org/10.1016/S0043-1354(02)00178-1
  13. N. C. Shang, Y. H. Yu, H. W. Ma, C. H. Chang, and M. L. Liou, J. Environ. Manag., 78, 216 (2006). https://doi.org/10.1016/j.jenvman.2005.03.015