Chitosan Derivatives for Target of Specific Tissue in the Body

생체 내 특정 조직의 표적을 위한 키토산 유도체

  • Jang, Mi-Kyeong (Department of Polymer Science and Engineering, Sunchon National University) ;
  • Nah, Jae-Woon (Department of Polymer Science and Engineering, Sunchon National University)
  • 장미경 (순천대학교 공과대학 고분자공학과) ;
  • 나재운 (순천대학교 공과대학 고분자공학과)
  • Received : 2010.10.04
  • Published : 2010.12.10

Abstract

Chitosan as a natural polymer has superior physicochemical properties such as biocompatibility, biodegradability and nontoxicity, but application of chitosan for therapy of cancer and gene related-disease has been limited by poor solubility in aqueous solution. Therefore, low molecular weight water-soluble chitosan (LMWSC) with high reactivity and strong positive charge can be applied as a delivery system having function to carry in the specific tissue the bioactive material like poor solubility drug, or therapeutic gene and developed as a therapeutic system having good therapeutic efficiency. The most important factor for therapy of various diseases is to reveal the antigen or receptor expressed in specific lesion tissue and the antibody and ligand which can bind with antigen is to introduce at the biomaterials for enhancement the therapeutic efficiency. The studies for cationic synthetic polymer as drug or gene delivery have been actively performed, but it has many problems such as toxicity in the body, therapeutic efficiency. From this point of view, this article demonstrated the introduction of functional groups to target the specific tissue and therapeutic strategy using the modification of LMWSC with free-amine group. The development of these delivery system will provide a positive vision for cancer therapy.

Acknowledgement

Supported by : 산학협동재단, 한국연구재단

References

  1. A. C. Antony, Annu Rev Nutr., 15, 1332 (1996).
  2. R. J. Lee and P. S. Low, J. Biol Chem., 4, 3198 (1994).
  3. S. Mansouri, Y. Cuie, F. Winnik, Q. Shi, P. Lavigne, M. Benderdour, E. Beaumont, and J. C. Fernandes, Biomaterials, 27, 2060 (2006). https://doi.org/10.1016/j.biomaterials.2005.09.020
  4. H. Wang P. Zhao, X. Liang, X. Gong, T. Song, R. Niu, and J. Chang, Biomaterials, 31, 4129 (2010). https://doi.org/10.1016/j.biomaterials.2010.01.089
  5. B. Stella, S. Arpicco, M. T. Peracchia, D. Desmaele, J. Hoebeke, M. Renoir, J. D'Angelo, L. Cattel, and P. Couvreur, J. Pharm. Sci., 89, 1452 (2000). https://doi.org/10.1002/1520-6017(200011)89:11<1452::AID-JPS8>3.0.CO;2-P
  6. R. E. Eliaz and F. C. Szoka, Cancer Research, 61, 2592 (2001).
  7. S. X. Song, D. Liu, J. L. Peng, H. W. Deng, Y. Guo, and L. X. Xu, FASEB J, 23, 1396 (2009). https://doi.org/10.1096/fj.08-117002
  8. K. W. Leong, H. Q. Mao, V. L. Truong-Le, K. Roy, S. M. Walsh, and J. T. August, J. Control. Release, 53, 183 (1998). https://doi.org/10.1016/S0168-3659(97)00252-6
  9. I. V. Zhigaltsev, N. Aurer, Q. F. Leone, E. Len, and J. Wang, J. Control. Release, 104, 103 (2005). https://doi.org/10.1016/j.jconrel.2005.01.010
  10. C. Berkland, M. King, A. Cox, K. Kim, and D. W. Pack, J. Control. Release, 82, 137 (2002). https://doi.org/10.1016/S0168-3659(02)00136-0
  11. F. L. Mi, T. B. Wong, S. S. Shyu, and S. F. Chang, J. Appl. Polym. Sci., 71, 747 (1999). https://doi.org/10.1002/(SICI)1097-4628(19990131)71:5<747::AID-APP9>3.0.CO;2-6
  12. G. Gregoriadis, Trends Biotechnol., 13, 527 (1995). https://doi.org/10.1016/S0167-7799(00)89017-4
  13. R. Hejazi and M. Amiji, J. Conttol. Release, 89, 151 (2003). https://doi.org/10.1016/S0168-3659(03)00126-3
  14. J. W. Nah and M. K. Jang, J. Polym. Sci. Part A: Polym. Chem., 40, 3796 (2002). https://doi.org/10.1002/pola.10463
  15. M. Thanou, J. C. Verhoef, and H. E. Junginger, Adv. Drug Delivery Rev., 52, 117 (2001). https://doi.org/10.1016/S0169-409X(01)00231-9
  16. K. Ogawa, T. Yui, and K. Okuyama, International Journal of Biological Macromolecules, 34, 1 (2004). https://doi.org/10.1016/j.ijbiomac.2003.11.002
  17. M. A. Wolfert, P. R. Dash, O. Nazarova, D. Oupicky, L. W. Seymour, S. Smart, J. Strohalm, and K. Ulbrich, Bioconfug. Chem, 10, 993 (1999). https://doi.org/10.1021/bc990025r
  18. M. K. Jang and J. W. Nah, Bull. Korean Chem. Sci., 24, 1303 (2003). https://doi.org/10.5012/bkcs.2003.24.9.1303
  19. W. G. Liu and K. D. Yao, J. Control. Release, 83, 1 (2002). https://doi.org/10.1016/S0168-3659(02)00144-X
  20. D. G. Kim, Y. I. Jeong, and J. W. Nah, J. Appl. Polym. Sci., 105, 3246 (2007). https://doi.org/10.1002/app.26480
  21. T. Ouchi, H. Nishizawa, and Y. Ohya, Polymer, 39, 5171 (1998). https://doi.org/10.1016/S0032-3861(97)10020-9
  22. Y. I. Jeong, D. G. Kim, M. K. Jang, and J. W. Nah, Carbohydrate Research, 343, 282 (2008). https://doi.org/10.1016/j.carres.2007.10.025
  23. N. V. Majeti, and K. Ravi, Reactive & Functional Polymers, 46, 1 (2000). https://doi.org/10.1016/S1381-5148(00)00038-9
  24. O. Skaugrud, Manufacturing Chemist, 60, 31 (1989).
  25. Y. H. Bae, T. Okano, and S. W. Kim, J. Polym. Sci. Polym. Phys., 28, 923 (1990). https://doi.org/10.1002/polb.1990.090280609
  26. K. Dusek and G. Responsive, Advances in Polymers Science. Springer verlag, 109 (1993).
  27. R. Yoshida, K. Sakai, T. Okano, Y. Sakurai, Y. H. Bae, and S. W. Kim, J. Biomater. Sci. Plymer Edn., 3, 155 (1991).
  28. H. Wei, X. Z. Zhang, W. Q. Chen, S. X. Cheng, and R. X. Zhuo, J. Bio. Mater. Res. Part A, 83A, 980 (2006).
  29. Y. Cao, C. Xhang, W. Shen, X. Cheng, L. L. Yu, and Q. Ping, J. Control. Release, 120, 186 (2007). https://doi.org/10.1016/j.jconrel.2007.05.009
  30. N. Ozdemir, A. Tuncel, M. Kang, and E. B. Denkbas, J. Nanosci. Naotechnol., 6, 2804 (2006). https://doi.org/10.1166/jnn.2006.463
  31. H. Feil, Y. H. Bae, J. Feijen, and S. W. Kim, Macromolecules, 25, 5528 (1992). https://doi.org/10.1021/ma00046a063
  32. M. Casolaro, Polymer, 38, 4215 (1997). https://doi.org/10.1016/S0032-3861(96)01010-5
  33. H. Feil, Y. H. Bae, J. Feijen, and S. W. Kim, Macromolecules, 26, 2496 (1993). https://doi.org/10.1021/ma00062a016
  34. M. Kurisawa, M. Yokoyama, and T. Okano, J. Control. Release, 69, 127 (2000). https://doi.org/10.1016/S0168-3659(00)00297-2
  35. H. S. Jang, C. Choi, D. G. Kim, M. K. Jang, and J. W. Nah, J. Chitin Chitosan, 12, 213 (2007).
  36. A. P. Zhu, M. Zhang, and Z. Zhang, Polym. Int., 53, 15 (2004). https://doi.org/10.1002/pi.1275
  37. K. Y. Cai, K. D. Yao, L. Yang, and X. Q. Li, J. Biomater. Sci., Polym., 12, 1303 (2001). https://doi.org/10.1163/156856202753419240
  38. H. Zheng and Y. M. Du, Polym. Mater. Sci. Eng., 18, 124 (2002).
  39. J. P. Nam, D. G. Kim, Y. I. Jeong, M. K. Jang, and J. W. Nah, J. Chitin Chitosan, 12, 151 (2007).
  40. M. K. Jang and J. W. Nah, Colloid and Surface B : Biointerfaces, in press.
  41. M. K. Jang and J. W. Nah, Chitin, Chitosan, Oligosaccharides and Their Derivatives, CRC Press, 2010, Chapter 24.
  42. C. Choi, D. G. Kim, M. J. Jang, T. H. M. K. Jang, and J. W. Nah, J. Appl. Polym Sci., 102, 3545 (2006). https://doi.org/10.1002/app.24809
  43. B. Agellon and E. C. Torchia, Biochim. Biophy., 198, 1386 (2000).
  44. K. Y. Lee, W. H. Jeong, I. C. Kwon, Y. Kim, and S. Y. Jeong, Macromolecules, 31, 378 (1998). https://doi.org/10.1021/ma9711304
  45. S. Y. Chae, S. Son, M. Lee, M. K. Jang, and J. W. Nah, J. Control. Release, 109, 330 (2005). https://doi.org/10.1016/j.jconrel.2005.09.040
  46. J. H. Senior, K. R. Trimble, and R. Maskiewicz, Biochem., Biophys., Acta, 1070, 173 (1991). https://doi.org/10.1016/0005-2736(91)90160-A
  47. H. M. Temin, Hum. Gene Ther., 1, 111 (1990). https://doi.org/10.1089/hum.1990.1.2-111
  48. V. S. Trubetskoy, V. P. Torchilin, S. J. Kennel, and L. Huang, Bioconjugate Chem., 3, 323 (1992). https://doi.org/10.1021/bc00016a011
  49. Y. H. Choi, F. Liu, J. S. Kim, Y. K. Choi, J. S. Park, and S. W. Kim, J. Control. Release, 54, 39 (1998). https://doi.org/10.1016/S0168-3659(97)00174-0
  50. J. W. Nah, L. Yu, S. Han, C. Ahn, and S. W. Kim, J. Control. Release, 78, 273 (2002). https://doi.org/10.1016/S0168-3659(01)00499-0
  51. C. Song, V. Labhasetwar, X. Cui, T. Underwood, and R. J. Levy, J. Control, Release, 54, 201 (1998). https://doi.org/10.1016/S0168-3659(98)00016-9
  52. J. F. Mitchel, D. B. Fram, D. Palme, R. Foster, J. A. Hirst, M. A. Azrin, L. M. Bow, A. M. Eldin, D. D. Waters, and R. G. Mckay, Circulation, 91, 785 (1995). https://doi.org/10.1161/01.CIR.91.3.785
  53. D. Voet and J. G. Voet, Biochemistry, ed. J. Stiefel, 1. 305, Wiley, New York (1990).
  54. D. Voet and J. G. Voet, Biochemistry, ed. J. Stiefel, 1. 309, Wiley, New York (1990).
  55. R. J. Havel, Atherosclerosis, 141 Suppl 1, S1 (1998). https://doi.org/10.1016/S0021-9150(98)00211-1
  56. M. Lougheed, E. D. Moore, D. R. Scriven, and U. P. Steinbrecher, Arterioscler Thromb Vasc Biol., 19, 1881 (1999). https://doi.org/10.1161/01.ATV.19.8.1881
  57. C. Choi, M. K. Jana, and J. W Nah, Polymer (Korea), 30, 279 (2006).
  58. P. Carmeliet and R. K. Jain. Nature, 407, 249 (2000). https://doi.org/10.1038/35025220
  59. P. Carmeliet and R. K. Jain, Nature, 407, 249 (2000). https://doi.org/10.1038/35025220
  60. K. A. Thomas, J. Biol. Chem, 271, 603 (1996). https://doi.org/10.1074/jbc.271.2.603
  61. W. J. Kim, J. W. Yockman, J. H. Jeong, L. V. Christensen, M. Lee, Y. H. Kim, and S. W. Kim, J. Control. Release, 114, 381 (2006). https://doi.org/10.1016/j.jconrel.2006.05.029
  62. A. Akinc, M. Thomas, A. M. Klibanov, and R. Langer, J. Gene Med., 7, 657 (2005).
  63. A. Kichler, C. Leborgne, E. Coeytaux, and O. Danos, J. Gene Med., 3, 135 (2001). https://doi.org/10.1002/jgm.173
  64. J. K. Park, D. G. Kim, C. Choi, M. K. Jang, and J. W. Nah, J. Korean Ind. Eng. Chem, 6, 607 (2007).