Chitosan Derivatives for Target of Specific Tissue in the Body

생체 내 특정 조직의 표적을 위한 키토산 유도체

  • Jang, Mi-Kyeong (Department of Polymer Science and Engineering, Sunchon National University) ;
  • Nah, Jae-Woon (Department of Polymer Science and Engineering, Sunchon National University)
  • 장미경 (순천대학교 공과대학 고분자공학과) ;
  • 나재운 (순천대학교 공과대학 고분자공학과)
  • Received : 2010.10.04
  • Published : 2010.12.10


Chitosan as a natural polymer has superior physicochemical properties such as biocompatibility, biodegradability and nontoxicity, but application of chitosan for therapy of cancer and gene related-disease has been limited by poor solubility in aqueous solution. Therefore, low molecular weight water-soluble chitosan (LMWSC) with high reactivity and strong positive charge can be applied as a delivery system having function to carry in the specific tissue the bioactive material like poor solubility drug, or therapeutic gene and developed as a therapeutic system having good therapeutic efficiency. The most important factor for therapy of various diseases is to reveal the antigen or receptor expressed in specific lesion tissue and the antibody and ligand which can bind with antigen is to introduce at the biomaterials for enhancement the therapeutic efficiency. The studies for cationic synthetic polymer as drug or gene delivery have been actively performed, but it has many problems such as toxicity in the body, therapeutic efficiency. From this point of view, this article demonstrated the introduction of functional groups to target the specific tissue and therapeutic strategy using the modification of LMWSC with free-amine group. The development of these delivery system will provide a positive vision for cancer therapy.


Supported by : 산학협동재단, 한국연구재단


  1. A. C. Antony, Annu Rev Nutr., 15, 1332 (1996).
  2. R. J. Lee and P. S. Low, J. Biol Chem., 4, 3198 (1994).
  3. S. Mansouri, Y. Cuie, F. Winnik, Q. Shi, P. Lavigne, M. Benderdour, E. Beaumont, and J. C. Fernandes, Biomaterials, 27, 2060 (2006).
  4. H. Wang P. Zhao, X. Liang, X. Gong, T. Song, R. Niu, and J. Chang, Biomaterials, 31, 4129 (2010).
  5. B. Stella, S. Arpicco, M. T. Peracchia, D. Desmaele, J. Hoebeke, M. Renoir, J. D'Angelo, L. Cattel, and P. Couvreur, J. Pharm. Sci., 89, 1452 (2000).<1452::AID-JPS8>3.0.CO;2-P
  6. R. E. Eliaz and F. C. Szoka, Cancer Research, 61, 2592 (2001).
  7. S. X. Song, D. Liu, J. L. Peng, H. W. Deng, Y. Guo, and L. X. Xu, FASEB J, 23, 1396 (2009).
  8. K. W. Leong, H. Q. Mao, V. L. Truong-Le, K. Roy, S. M. Walsh, and J. T. August, J. Control. Release, 53, 183 (1998).
  9. I. V. Zhigaltsev, N. Aurer, Q. F. Leone, E. Len, and J. Wang, J. Control. Release, 104, 103 (2005).
  10. C. Berkland, M. King, A. Cox, K. Kim, and D. W. Pack, J. Control. Release, 82, 137 (2002).
  11. F. L. Mi, T. B. Wong, S. S. Shyu, and S. F. Chang, J. Appl. Polym. Sci., 71, 747 (1999).<747::AID-APP9>3.0.CO;2-6
  12. G. Gregoriadis, Trends Biotechnol., 13, 527 (1995).
  13. R. Hejazi and M. Amiji, J. Conttol. Release, 89, 151 (2003).
  14. J. W. Nah and M. K. Jang, J. Polym. Sci. Part A: Polym. Chem., 40, 3796 (2002).
  15. M. Thanou, J. C. Verhoef, and H. E. Junginger, Adv. Drug Delivery Rev., 52, 117 (2001).
  16. K. Ogawa, T. Yui, and K. Okuyama, International Journal of Biological Macromolecules, 34, 1 (2004).
  17. M. A. Wolfert, P. R. Dash, O. Nazarova, D. Oupicky, L. W. Seymour, S. Smart, J. Strohalm, and K. Ulbrich, Bioconfug. Chem, 10, 993 (1999).
  18. M. K. Jang and J. W. Nah, Bull. Korean Chem. Sci., 24, 1303 (2003).
  19. W. G. Liu and K. D. Yao, J. Control. Release, 83, 1 (2002).
  20. D. G. Kim, Y. I. Jeong, and J. W. Nah, J. Appl. Polym. Sci., 105, 3246 (2007).
  21. T. Ouchi, H. Nishizawa, and Y. Ohya, Polymer, 39, 5171 (1998).
  22. Y. I. Jeong, D. G. Kim, M. K. Jang, and J. W. Nah, Carbohydrate Research, 343, 282 (2008).
  23. N. V. Majeti, and K. Ravi, Reactive & Functional Polymers, 46, 1 (2000).
  24. O. Skaugrud, Manufacturing Chemist, 60, 31 (1989).
  25. Y. H. Bae, T. Okano, and S. W. Kim, J. Polym. Sci. Polym. Phys., 28, 923 (1990).
  26. K. Dusek and G. Responsive, Advances in Polymers Science. Springer verlag, 109 (1993).
  27. R. Yoshida, K. Sakai, T. Okano, Y. Sakurai, Y. H. Bae, and S. W. Kim, J. Biomater. Sci. Plymer Edn., 3, 155 (1991).
  28. H. Wei, X. Z. Zhang, W. Q. Chen, S. X. Cheng, and R. X. Zhuo, J. Bio. Mater. Res. Part A, 83A, 980 (2006).
  29. Y. Cao, C. Xhang, W. Shen, X. Cheng, L. L. Yu, and Q. Ping, J. Control. Release, 120, 186 (2007).
  30. N. Ozdemir, A. Tuncel, M. Kang, and E. B. Denkbas, J. Nanosci. Naotechnol., 6, 2804 (2006).
  31. H. Feil, Y. H. Bae, J. Feijen, and S. W. Kim, Macromolecules, 25, 5528 (1992).
  32. M. Casolaro, Polymer, 38, 4215 (1997).
  33. H. Feil, Y. H. Bae, J. Feijen, and S. W. Kim, Macromolecules, 26, 2496 (1993).
  34. M. Kurisawa, M. Yokoyama, and T. Okano, J. Control. Release, 69, 127 (2000).
  35. H. S. Jang, C. Choi, D. G. Kim, M. K. Jang, and J. W. Nah, J. Chitin Chitosan, 12, 213 (2007).
  36. A. P. Zhu, M. Zhang, and Z. Zhang, Polym. Int., 53, 15 (2004).
  37. K. Y. Cai, K. D. Yao, L. Yang, and X. Q. Li, J. Biomater. Sci., Polym., 12, 1303 (2001).
  38. H. Zheng and Y. M. Du, Polym. Mater. Sci. Eng., 18, 124 (2002).
  39. J. P. Nam, D. G. Kim, Y. I. Jeong, M. K. Jang, and J. W. Nah, J. Chitin Chitosan, 12, 151 (2007).
  40. M. K. Jang and J. W. Nah, Colloid and Surface B : Biointerfaces, in press.
  41. M. K. Jang and J. W. Nah, Chitin, Chitosan, Oligosaccharides and Their Derivatives, CRC Press, 2010, Chapter 24.
  42. C. Choi, D. G. Kim, M. J. Jang, T. H. M. K. Jang, and J. W. Nah, J. Appl. Polym Sci., 102, 3545 (2006).
  43. B. Agellon and E. C. Torchia, Biochim. Biophy., 198, 1386 (2000).
  44. K. Y. Lee, W. H. Jeong, I. C. Kwon, Y. Kim, and S. Y. Jeong, Macromolecules, 31, 378 (1998).
  45. S. Y. Chae, S. Son, M. Lee, M. K. Jang, and J. W. Nah, J. Control. Release, 109, 330 (2005).
  46. J. H. Senior, K. R. Trimble, and R. Maskiewicz, Biochem., Biophys., Acta, 1070, 173 (1991).
  47. H. M. Temin, Hum. Gene Ther., 1, 111 (1990).
  48. V. S. Trubetskoy, V. P. Torchilin, S. J. Kennel, and L. Huang, Bioconjugate Chem., 3, 323 (1992).
  49. Y. H. Choi, F. Liu, J. S. Kim, Y. K. Choi, J. S. Park, and S. W. Kim, J. Control. Release, 54, 39 (1998).
  50. J. W. Nah, L. Yu, S. Han, C. Ahn, and S. W. Kim, J. Control. Release, 78, 273 (2002).
  51. C. Song, V. Labhasetwar, X. Cui, T. Underwood, and R. J. Levy, J. Control, Release, 54, 201 (1998).
  52. J. F. Mitchel, D. B. Fram, D. Palme, R. Foster, J. A. Hirst, M. A. Azrin, L. M. Bow, A. M. Eldin, D. D. Waters, and R. G. Mckay, Circulation, 91, 785 (1995).
  53. D. Voet and J. G. Voet, Biochemistry, ed. J. Stiefel, 1. 305, Wiley, New York (1990).
  54. D. Voet and J. G. Voet, Biochemistry, ed. J. Stiefel, 1. 309, Wiley, New York (1990).
  55. R. J. Havel, Atherosclerosis, 141 Suppl 1, S1 (1998).
  56. M. Lougheed, E. D. Moore, D. R. Scriven, and U. P. Steinbrecher, Arterioscler Thromb Vasc Biol., 19, 1881 (1999).
  57. C. Choi, M. K. Jana, and J. W Nah, Polymer (Korea), 30, 279 (2006).
  58. P. Carmeliet and R. K. Jain. Nature, 407, 249 (2000).
  59. P. Carmeliet and R. K. Jain, Nature, 407, 249 (2000).
  60. K. A. Thomas, J. Biol. Chem, 271, 603 (1996).
  61. W. J. Kim, J. W. Yockman, J. H. Jeong, L. V. Christensen, M. Lee, Y. H. Kim, and S. W. Kim, J. Control. Release, 114, 381 (2006).
  62. A. Akinc, M. Thomas, A. M. Klibanov, and R. Langer, J. Gene Med., 7, 657 (2005).
  63. A. Kichler, C. Leborgne, E. Coeytaux, and O. Danos, J. Gene Med., 3, 135 (2001).
  64. J. K. Park, D. G. Kim, C. Choi, M. K. Jang, and J. W. Nah, J. Korean Ind. Eng. Chem, 6, 607 (2007).