Synthesis of Poly(alkyl methacrylate)s Containing Various Side Chains for Pour Point Depressants

서로 다른 측쇄 구조를 가진 폴리(알킬 메타크릴레이트)계의 저온유동성 향상제 합성

  • Hong, Jin-Sook (Green Chemistry Division, Chemical Biotechnology Research Center, KRICT) ;
  • Kim, Young-Wun (Green Chemistry Division, Chemical Biotechnology Research Center, KRICT) ;
  • Chung, Keun-Wo (Green Chemistry Division, Chemical Biotechnology Research Center, KRICT) ;
  • Jeong, Soo-Hwan (Department of Chemical Engineering, Kyung Pook National University)
  • 홍진숙 (한국화학연구원 그린화학연구단 바이오정밀화학연센터) ;
  • 김영운 (한국화학연구원 그린화학연구단 바이오정밀화학연센터) ;
  • 정근우 (한국화학연구원 그린화학연구단 바이오정밀화학연센터) ;
  • 정수환 (경북대학교 화학공학과)
  • Received : 2010.06.11
  • Accepted : 2010.07.09
  • Published : 2010.10.10

Abstract

n-Paraffin and saturated fatty acid methyl esters in the diesel and bio-diesel fuel crystallize at low temperature. Many articles have addressed various solutions for the low temperature crystallization problem and one of them is the use of methacrylate copolymers. In this work, we synthesized a series of copolymers in the reaction condition of 70 : 30 molar ratio of lauryl methacrylate (LMA) (or stearyl methacrylate (SMA)) and alkyl methacrylates. The structures of the copolymers were characterized by $^1H$-NMR and FT-IR spectroscopy, and the molecular weight of copolymers were obtained from Gel Permeation Chromatography (GPC) method. The concentrations of additives were 500~1000 ppm and 1000~10000 ppm in diesel fuels and bio-diesel fuel (BD5 and BD20), respectively. The addition of copolymers changes the many properties of fuel such as the pour point (PP), cloud point (CP) and cold filtering plugging point (CFPP). For example, the low temperature properties of the copolymers containing SMA ($PSMAmR_2n$) were excellently improved about 15, 7, and $10^{\circ}C$ for PP, CP and CFPP, respectively.

References

  1. Y. K, Lim, S. C. Shin, E. S. Yim, and H. O. Song, J. Korean Ind. Eng. Chem., 19, 137 (2008).
  2. Y. K. Hong and W. H. Hong, Korean Chem. Eng. Res., 45, 424 (2007).
  3. M. Balat, H. Balat, and C. Oz, Energy Combust. Sci., 34, 551 (2008). https://doi.org/10.1016/j.pecs.2007.11.001
  4. M. Cohron, H. Zhao, H. Liu, and W. Pan, Energy Fuels, 22, 1720 (2008). https://doi.org/10.1021/ef7005707
  5. N. U. Sorian Jr, R. Venditii, and D. S. Argyropoulos, Fuel, 88, 560 (2009). https://doi.org/10.1016/j.fuel.2008.10.013
  6. A. Soldi, R. S. Oliveira, V. Barbosa, and A. F. Ce'sar-Oliveira, Eur. Polym. J., 43, 3671 (2007). https://doi.org/10.1016/j.eurpolymj.2006.07.021
  7. E. Marie, Y. Chevalier, F. Eydoux, L. Germanaud, and P. Flores, J. Colloid Interface Sci., 290, 406 (2005). https://doi.org/10.1016/j.jcis.2005.04.054
  8. Y. Song, T. Ren, X. Fub, and X. Xu, Fuel Process. Technol., 86, 641 (2005). https://doi.org/10.1016/j.fuproc.2004.05.011
  9. American Society for testing and Materials, ASTM designation, D97-05 Philadelphipa (2005).
  10. American Society for testing and Materials, ASTM designation, D6371-05, Philadelphipa (2005).
  11. U. Nester, J. Soriano, P. M. Veronica, and M. Matsumura, Fuel, 85, 25 (2006). https://doi.org/10.1016/j.fuel.2005.06.006
  12. W. A. Affens, J. M. Hall, and R. N. Hazlett, Fuel, 63, 543 (1984). https://doi.org/10.1016/0016-2361(84)90294-1
  13. V. A. Adewusi, Petrol. Sci. Technol., 16, 953 (1998). https://doi.org/10.1080/10916469808949819
  14. G. A. Holder and J. Winker, J. Inst. Pet., 51, 243 (1965).
  15. Y. Song, T. Ren, X. Fu, and X. Xu, Fuel Process. Technol., 86, 641 (2005). https://doi.org/10.1016/j.fuproc.2004.05.011