Synthesis of Ti-SBA-15 Doped with Lanthanide Ion and Photocatalytic Decomposition of Methylene Blue

La 이온이 도핑된 Ti-SBA-15의 합성 및 메틸렌블루의 광촉매 분해 반응

  • Jung, Won-Young (Department of Chemical Engineering, Pukyong National University) ;
  • Hong, Seong-Soo (Department of Chemical Engineering, Pukyong National University)
  • Received : 2010.02.10
  • Accepted : 2010.03.08
  • Published : 2010.06.10

Abstract

Ti-SBA-15 catalysts doped with lanthanide ion were synthesized using conventional hydrothermal method and they were characterized by XRD, FT-IR, DRS, $NH_3$-TPD and PL. We also examined the activity of these materials on the photocatalytic decomposition of methylene blue. La/Ti-SBA-15 samples with varying lanthanide ions doping maintained the mesoporous structure and the catalysts calcined at $500^{\circ}C$ for 6 h showed the highest crystallinity. With increasing the doping amount of lanthanide ion, the pore size and pore volume of La/Ti-SBA-15 materials decreased but the surface area increased. 1% La/Ti-SBA-15 catalysts showed the highest photocatalytic activity on the decomposition of methylene blue but the catalysts doped with more than 5% lanthanide ions showed lower activity compared to pure Ti-SBA-15 catalyst.

Acknowledgement

Supported by : 한국연구재단

References

  1. S. Matsuda and A. Kato, Appl. Catal., 8, 149 (1983). https://doi.org/10.1016/0166-9834(83)80076-1
  2. S. A. Larson and J. L. Falconer, Appl. Catal. B, 4, 325 (1994). https://doi.org/10.1016/0926-3373(94)00030-1
  3. P. V. Kamat and N. M. Dimitrijevic, Solar Energy, 44, 83 (1990). https://doi.org/10.1016/0038-092X(90)90070-S
  4. B. Notari, Adv. Catal., 41, 253 (1996). https://doi.org/10.1016/S0360-0564(08)60042-5
  5. Y. J. Do, J. H. Kim, J. H. Park, S. S. Park, S. S. Hong, C. S. Suh, and G. D. Lee, Catal. Today, 101, 299 (2005). https://doi.org/10.1016/j.cattod.2005.03.009
  6. D. Zhao, Q. Huo, J. Feng, B. F. Chmelka, and G. D. Stucky, J. Am. Chem. Soc., 120, 6024 (1998). https://doi.org/10.1021/ja974025i
  7. Y. S Jung, S. H. Baek, K. T. Lim, S. S. Park, G. D. Lee, and S. S. Hong, Catal. Today, 131, 437 (2008). https://doi.org/10.1016/j.cattod.2007.10.072
  8. C. Anderson and A. J. Bard, J. Phys. Chem., 101, 2611 (1997). https://doi.org/10.1021/jp9626982
  9. S. Ogawa, K. Hu, and A. J. Band, J. Phys. Chem., 101, 5707 (1997). https://doi.org/10.1021/jp9705535
  10. D. Kim and S. I. Woo, Solid State Commun., 136, 554 (2005). https://doi.org/10.1016/j.ssc.2005.09.012
  11. X. Yan and J. He, Appl. Catal. B, 55, 243 (2005). https://doi.org/10.1016/j.apcatb.2004.08.014
  12. G. Li and X. S. Zhao, Ind. Eng. Chem. Res., 45, 3569 (2006). https://doi.org/10.1021/ie0514253
  13. A. Larbot, J. A. Alary, J. P. Fabre, C. Guizard, and L. Cot, Better Ceramics Through Chemistry II, 659 (1986).
  14. M. Saif and M. S. A. Abdel-Mottaleb, Inorg. Chim. Acta, 360, 2863 (2007). https://doi.org/10.1016/j.ica.2006.12.052
  15. A. Tuel, Zeolite, 15, 228 (1995). https://doi.org/10.1016/0144-2449(94)00036-R
  16. M. Boccuti, K. M. Rao, A. Zecchina, G. Leofanti, and G. Petrini, in: C. Morterra, A. Zecchina, and G. Costa (Eds.), Structure and Reactivity of Surfaces, Elsevier, Amsterdam (1989).
  17. M. Uno, A. Kosuga, M. Okui, K. Horisaka, and S. Yamanaka, J. Alloy Compd, 400, 270 (2005). https://doi.org/10.1016/j.jallcom.2005.04.004
  18. C. S. Turchi and D. F. Ollis, J. Catal., 122, 178 (1990). https://doi.org/10.1016/0021-9517(90)90269-P
  19. M. S. Lee, G. D. Lee, C. S. Ju, K. T Lim, and S. S. Hong, J. Korean Ind. Eng. Chem., 13, 216 (2002).
  20. B. L. Newalkar, J. Olanrewaju, and S. Komarneni, Chem. Mater., 13, 552 (2001). https://doi.org/10.1021/cm000748g
  21. V. Iliev and D. Tomova, Appl. Catal. B, 63, 266 (2006). https://doi.org/10.1016/j.apcatb.2005.10.014
  22. M. D. Alba, Z. Luan, and J. Klinowski, J. Phys. Chem., 100, 2178 (1996). https://doi.org/10.1021/jp9515895
  23. T. Lopez, F. Rojas, R. Alexander-Katz, F. Galindo, A. Balankin, and A. Buljan, J. Solid State Chem., 177, 1873 (2004). https://doi.org/10.1016/j.jssc.2004.01.013