Synthesis of Ti-SBA-15 Doped with Lanthanide Ion and Photocatalytic Decomposition of Methylene Blue

La 이온이 도핑된 Ti-SBA-15의 합성 및 메틸렌블루의 광촉매 분해 반응

  • Jung, Won-Young (Department of Chemical Engineering, Pukyong National University) ;
  • Hong, Seong-Soo (Department of Chemical Engineering, Pukyong National University)
  • Received : 2010.02.10
  • Accepted : 2010.03.08
  • Published : 2010.06.10


Ti-SBA-15 catalysts doped with lanthanide ion were synthesized using conventional hydrothermal method and they were characterized by XRD, FT-IR, DRS, $NH_3$-TPD and PL. We also examined the activity of these materials on the photocatalytic decomposition of methylene blue. La/Ti-SBA-15 samples with varying lanthanide ions doping maintained the mesoporous structure and the catalysts calcined at $500^{\circ}C$ for 6 h showed the highest crystallinity. With increasing the doping amount of lanthanide ion, the pore size and pore volume of La/Ti-SBA-15 materials decreased but the surface area increased. 1% La/Ti-SBA-15 catalysts showed the highest photocatalytic activity on the decomposition of methylene blue but the catalysts doped with more than 5% lanthanide ions showed lower activity compared to pure Ti-SBA-15 catalyst.


Supported by : 한국연구재단


  1. S. Matsuda and A. Kato, Appl. Catal., 8, 149 (1983).
  2. S. A. Larson and J. L. Falconer, Appl. Catal. B, 4, 325 (1994).
  3. P. V. Kamat and N. M. Dimitrijevic, Solar Energy, 44, 83 (1990).
  4. B. Notari, Adv. Catal., 41, 253 (1996).
  5. Y. J. Do, J. H. Kim, J. H. Park, S. S. Park, S. S. Hong, C. S. Suh, and G. D. Lee, Catal. Today, 101, 299 (2005).
  6. D. Zhao, Q. Huo, J. Feng, B. F. Chmelka, and G. D. Stucky, J. Am. Chem. Soc., 120, 6024 (1998).
  7. Y. S Jung, S. H. Baek, K. T. Lim, S. S. Park, G. D. Lee, and S. S. Hong, Catal. Today, 131, 437 (2008).
  8. C. Anderson and A. J. Bard, J. Phys. Chem., 101, 2611 (1997).
  9. S. Ogawa, K. Hu, and A. J. Band, J. Phys. Chem., 101, 5707 (1997).
  10. D. Kim and S. I. Woo, Solid State Commun., 136, 554 (2005).
  11. X. Yan and J. He, Appl. Catal. B, 55, 243 (2005).
  12. G. Li and X. S. Zhao, Ind. Eng. Chem. Res., 45, 3569 (2006).
  13. A. Larbot, J. A. Alary, J. P. Fabre, C. Guizard, and L. Cot, Better Ceramics Through Chemistry II, 659 (1986).
  14. M. Saif and M. S. A. Abdel-Mottaleb, Inorg. Chim. Acta, 360, 2863 (2007).
  15. A. Tuel, Zeolite, 15, 228 (1995).
  16. M. Boccuti, K. M. Rao, A. Zecchina, G. Leofanti, and G. Petrini, in: C. Morterra, A. Zecchina, and G. Costa (Eds.), Structure and Reactivity of Surfaces, Elsevier, Amsterdam (1989).
  17. M. Uno, A. Kosuga, M. Okui, K. Horisaka, and S. Yamanaka, J. Alloy Compd, 400, 270 (2005).
  18. C. S. Turchi and D. F. Ollis, J. Catal., 122, 178 (1990).
  19. M. S. Lee, G. D. Lee, C. S. Ju, K. T Lim, and S. S. Hong, J. Korean Ind. Eng. Chem., 13, 216 (2002).
  20. B. L. Newalkar, J. Olanrewaju, and S. Komarneni, Chem. Mater., 13, 552 (2001).
  21. V. Iliev and D. Tomova, Appl. Catal. B, 63, 266 (2006).
  22. M. D. Alba, Z. Luan, and J. Klinowski, J. Phys. Chem., 100, 2178 (1996).
  23. T. Lopez, F. Rojas, R. Alexander-Katz, F. Galindo, A. Balankin, and A. Buljan, J. Solid State Chem., 177, 1873 (2004).