Study of $CO_2$ Absorption Characteristics in Aqueous K_2CO_3$ Solution with Homopiperazine

K_2CO_3$/homopiperazine 수용액의 이산화탄소 흡수 특성 연구

  • Kim, Young-Eun (Greenhouse Gas Research Center, Korea Institute of Energy Research) ;
  • Nam, Sung-Chan (Greenhouse Gas Research Center, Korea Institute of Energy Research) ;
  • Lee, Young-Taek (Department of Bio-Applied Chemistry, Chungnam National University) ;
  • Yoon, Yeo-Il (Greenhouse Gas Research Center, Korea Institute of Energy Research)
  • 김영은 (한국에너지기술연구원 온실가스연구단) ;
  • 남성찬 (한국에너지기술연구원 온실가스연구단) ;
  • 이용택 (충남대학교 공과대학 바이오응용화학부) ;
  • 윤여일 (한국에너지기술연구원 온실가스연구단)
  • Received : 2010.01.18
  • Accepted : 2010.02.25
  • Published : 2010.06.10

Abstract

In this study, as one of the carbon dioxide ($CO_2$) adsorbents the aqueous potassium carbonate ($K_2CO_3$)/promoter mixtures were investigated. Equilibrium partial pressure ($P_{CO_2}^*$) and pressure change were measured by using VLE (Vapor-liquid equilibrium) equipment in the mixture solution at 60 and $80^{\circ}C$, respectively. Absorption capacity was estimated in the semi-batch absorption apparatus at 40, 60 and $80^{\circ}C$. We proposed to use homopiperazine (homoPZ), cyclic diamine compound as a promoter of $K_2CO_3$ solution, to prevent crystalline formation and increase absorption capacity of aqueous $K_2CO_3$ solution. The absorption capacity of $K_2CO_3$/homoPZ was compared with MEA, $K_2CO_3$ and $K_2CO_3$/piperazine (PZ). Based on the results, we found that the mixture solution containing homoPZ had lower equilibrium partial pressure than that of $K_2CO_3$ solution and the absorption rate was approximately 0.375-times faster at $60^{\circ}C$, 0.343-times faster at $80^{\circ}C$ than that of aqueous $K_2CO_3$ solution without homoPZ. $K_2CO_3$/homoPZ solution showed excellent CO2 loading capacity compared with MEA solution at $60^{\circ}C$.

Acknowledgement

Grant : 21세기 프론티어 연구개발사업

Supported by : 이산화탄소 저감 및 처리기술개발 사업단

References

  1. S. Charkvarti, A. Gupta, and B. Hunek, First National Conference on Carbon Sequestration, Washington, DC, May 15-17 (2001).
  2. UNFCCC Report for Greenhouse Gases Emission Statistics, Korea Energy Economics Institute (2001).
  3. D. J. Seo, Ph.D. Dissertation, Korea Institute of Science and Technology, Korea (2000).
  4. G. Astarita, Chem. Eng. Sci., 16, 202 (1961). https://doi.org/10.1016/0009-2509(61)80031-6
  5. G. Astarita, D. W. Savage, and A. Bisio, John Wiley & Sons, New York (1983).
  6. G. S. Goff, Ph.D. Dissertarion, The University of Texas at Austin, Austin, TX (2005).
  7. A. O. Alawode, Ph.M. Dissertation, The University of Texas at Austin, Austin, TX (2005).
  8. M. Apple, U. Wagner, H. J. Henrici, K. Voldamer, and E. Fuerst, U. S. Patent 4,336,233 (1982).
  9. G. W. Xu, C. F. Zhang, S. J. Qin, and Y. W. Wang, Ind. Eng. Chem. Res., 31, 921 (1992). https://doi.org/10.1021/ie00003a038
  10. W. J. Jang, Y. I. Yoon, S. D. Park, Y. W. Rhee, and I. H. Baek, J. Korean Ind. Eng. Chem., 19, 645 (2008).
  11. H. E. Benson, J. H. Field, and R. M. Jimeson, Chem. Eng. Prog., 50, 356 (1954).
  12. H. E. Benson, J. H. Field, and W. P. Haynes, Chem. Eng. Prog., 52, 433 (1956).
  13. J. S. Tosh, J. H. Field, H. E. Benson, and W. P. Haynes, U. S. Bureau of Mines Report of Investigation, 5484, 23 (1959).
  14. D. W. Savage and G. Sartori, Faraday Discuss. Chem. Soc., 77, 17 (1984). https://doi.org/10.1039/dc9847700017
  15. P. C. Tseng, W. S. Ho, and D. W. Savage, AIChE. J., 34, 922 (1988). https://doi.org/10.1002/aic.690340604
  16. J. T. Cullinane and G. T. Rochelle, Chem. Eng. Sci., 59, 3619 (2004). https://doi.org/10.1016/j.ces.2004.03.029
  17. J. T. Cullinane, Ph.D. Dissertation, The University of Texas at Austin, Austin, TX (2005).
  18. G. Astarita, D. W. Savage, and J. M. Longo, Chem. Eng. Sci., 36, 581 (1981). https://doi.org/10.1016/0009-2509(81)80146-7
  19. H. Bosch, G. F. Versteeg, and Van W. P. M. Swaaij, Chem. Eng. Sci., 44, 2735 (1989). https://doi.org/10.1016/0009-2509(89)85216-9