A Study Based on Molecular Orbital Theory of Polymerization of Oxolane High Explosives

Oxolane 고폭 화약류의 중합반응에 관한 분자 궤도론적 연구

  • Received : 2010.01.08
  • Accepted : 2010.03.15
  • Published : 2010.06.10


The cationic polymerization of oxolane high explosives which have pendant explosive groups such as azido, nitrato and hydrazino is investigated theoretically using the semiempirical MINDO/3, MNDO and AM1 methods. The nucleophilicity and basicity of oxolane high explosives can be explained by the negative charge on oxygen atom of oxolane. The reactivity of propagation in the polymerization of oxolane can be represented by the positive charge on carbon atom and the low LUMO energy of active species of oxolane. The reaction of the oxolane high explosives in oxonium ion form to the open chain carbenium ion form is expected by computational stability energy (17.950~30.197 kcal/mol) of the oxonium ion and carbenium ion favoring the carbenium ion. The relative equilibrium concentration of cyclic oxonium ion and carbenium ion is found to be a major determinant of mechanism, owing to the rapid equilibrium of these catoinic forms. Based on calculation, in the prepolymer propagation step, $S_N1$ mechanism will be at least as fast as that for $S_N2$ mechanism.


  1. H. Meerwein, German Patent, 741-478 (1937).
  2. B. Xu, C. P. Lilly, and J. C. W. Chien, Macromolecules, 20, 1445 (1987). https://doi.org/10.1021/ma00173a001
  3. R. L. Willer and R. S. Day, Reprint 258-311 (1989).
  4. G. E. Manser, R. W. Fletch, and G. C. Shaw, Report NR 84589, Office of Naval Research (1984).
  5. D. Cremer and E. Eraka, J. Am. Chem. Soc., 107, 3800 (1985). https://doi.org/10.1021/ja00299a009
  6. S. Penczek, P. Kubisa, and R. Szymanski, Makromol. Chem., Macromol, Symp. 3, 203 (1986). https://doi.org/10.1002/masy.19860030116
  7. J. C. W. Chien, Y. G. Cheun, and C. P. Lilya, Marcromolecules, 3, 870 (1988).
  8. E. L Eliel and K. M. Pietrusiewicz, Top Carbon-13 NMR spectroscopy, 3, 172, New York (1997).
  9. Y. G. Cheun, J. T. Kim, and S. K. Park, J. Kor. Chem. Soc., 36, 636 (1991).
  10. J. T. Kim, J. Korean Ind. Eng. Chem., 20, 159 (2009).
  11. G. E. Manser. Technology of Polymer Compounds and Energetic Materials, Mcgraw-Hill Book Company, 58 (1998).
  12. S. C. Moon, H. S. Jung, J. C. Lee, J. W. Hong, J. K. Choi, and B. W. Jo, J. Korean Ind. Eng. Chem., 16, 52 (2005).
  13. S. H. Park, T. V. Phuong, H. W. Song, K. N. Park, B. M. Kim, and Y. S. Choe, J. Korean Ind. Eng. Chem., 19, 471 (2008).
  14. M. J. S. Dewar, E. G. Healy, and J. J. P. Stewart, QCPE, Program 506, Version 2.10 was used in this work.
  15. M. J. S. Dewar, E. G. Zoebisch, and J. J. P. Stewart, J. Am. Chem. Soc., 107, 3902 (1985). https://doi.org/10.1021/ja00299a024
  16. I. Fleming, Frontier Orbitals and Organic Chemical Reactions, Wiley Interscience, New York, 5th (2006).
  17. G. Klopman, J. Am. Chem. Soc., 108, 225 (1986).
  18. C. Liang and L. C. Allen, J. Am. Chem. Soc., 113, 1878 (1991). https://doi.org/10.1021/ja00006a002