Carbon Dioxide Fixation using Spirulina Platensis NIES 39 in Polyethylene Bag

Spirulina Platensis NIES 39를 이용한 Polyethylene Bag 반응기에서의 이산화탄소 고정화

  • Kim, Young-Min (Department of Bioscience and Biotechnology, Collage of Engineering, Silla University) ;
  • Kim, Ji-Youn (Department of Bioscience and Biotechnology, Collage of Engineering, Silla University) ;
  • Lee, Sung-Mok (Department of Bioscience and Biotechnology, Collage of Engineering, Silla University) ;
  • Ha, Jong-Myung (Department of Bioscience and Biotechnology, Collage of Engineering, Silla University) ;
  • Kwon, Tae-Ho (Jeonju Biomaterials Institute) ;
  • Lee, Jae-Hwa (Department of Bioscience and Biotechnology, Collage of Engineering, Silla University)
  • 김영민 (신라대학교 공과대학 생명공학과) ;
  • 김지윤 (신라대학교 공과대학 생명공학과) ;
  • 이성목 (신라대학교 공과대학 생명공학과) ;
  • 하종명 (신라대학교 공과대학 생명공학과) ;
  • 권태호 (전주생물소재연구소) ;
  • 이재화 (신라대학교 공과대학 생명공학과)
  • Received : 2009.12.01
  • Accepted : 2010.02.23
  • Published : 2010.06.10

Abstract

To replace current expensive photobioreactor, this study was conducted to develop low-cost photobioreactor made of polyethylene bag. In previous study, optimal culture conditions of Spirulina platensis NIES 39 have been established, and based on these, the study of biological carbon dioxide fixation has been conducted. The maximum growth was the biomass 2.677 g/L at conditions of 10% $CO_2$, 0.1 vvm. It was shown that $F_{CO_2}$ was 4.056 g $CO_2$/L and $R_{CO_2}$ was 0.312 g $CO_2$/L/day. But, compared with the data at conditions of 5% $CO_2$, 0.1 vvm, $FE_{CO_2}$ was shown 52.372% which is half of it. Regarding the effect of $CO_2$ following illumination, the growth revealed that the input conditions, for 10 min per 3 h, were excellent in the light. $CO_2$ in absent light. $CO_2$ concentration and flow rate were 5% $CO_2$, 0.1 vvm, respectively. Finally, the addition of $CO_2$ was ineffective in the absence of light.

Keywords

$CO_2$ fixation;Spirulina platensis NIES 39;polyethylene bag;photobioreactor

Acknowledgement

Grant : 에너지자원인력양성사업

Supported by : 지식경제부

References

  1. S. H. Schmeider, Science, 243, 771 (1989). https://doi.org/10.1126/science.243.4892.771
  2. L. Binaghi, A. D. Borghi, A. Lodi, A. Converti, and M. D. Borghi, Proc. Biochem., 38, 1241 (2003).
  3. H. K. Park, H. J. Park, and B. S. Kang, DCER Techinfo part I, 3, 100 (2004).
  4. I. H. Lee, S. I. Kim, and J. Y. Park, Ind. Chem., 18, 239 (2007).
  5. H. D. Hwang, H. Y. Shin, H. H. Kwak, and S. Y. Bae, Korean Chem. Eng. Res., 44, 588 (2006).
  6. T. Karube, T. Takeuchi, and D. J. Barnes, Adv. Biochem. Eng. Biotechnol., 46, 63 (1992).
  7. D. O. Hall and J. I. House, Energy Convers. Manag., 34, 889 (1993). https://doi.org/10.1016/0196-8904(93)90033-7
  8. A. V. C. Jorge, A. L. Giani, I. P. A. Daniel, M. M. Guilherme, and T. K. Roselini, World J. Microbial. Biotechnol., 16, 15 (2000). https://doi.org/10.1023/A:1008992826344
  9. M. Tredici, G. C. Zitelli, S. Biagiolini, and R. Materassi, Bull. Inst. Oceanogr., 12, 89 (1993).
  10. H. M. Oh, J. S. Kim, and S. J. Lee, Kor. J. of Environ. Biol., 16, 291 (1998).
  11. T. H. Kim, K. D. Sung, J. S. Lee, J. Y. Lee, S. J. Oh, and H. Y. Lee, Kor. J. Appl. Microbiol. Biotechnol., 25, 235 (1997).
  12. S. M. Jeon, I. H. Kim, J. M. Ha, and J. H. Lee, J. Korean Ind. Eng. Chem., 19, 145 (2008).
  13. D. S. Joo, C. K. Jung, C. H. Lee, and S. Y. Cho, J. Korean Fish. Soc., 33, 475 (2000).
  14. F. Martinez-Jeronimo and F. Espinosa-Chavez, J. Appl. Phycol., 6, 423 (1994) https://doi.org/10.1007/BF02182159
  15. R. Rippka, J. Deruelles, J. B. Waterbury, M. Herdman, and P. G. Roughan, J. Sci. Food Agric., 47, 295 (1989).
  16. S. C. Babu and B. Rajasekaran, Food Policy, 9, 405 (1991).
  17. E. W. Becker and L. V. Vanattaraman, Biomass, 4, 105 (1984). https://doi.org/10.1016/0144-4565(84)90060-X
  18. O. Ciferri, Microbiol. Rev., 47, 551 (1983).
  19. L. M. Mosulishvili, E. I. Kirkesali, A. I. Belokobylsky, A. I. Khizanishvili, M. V. Frontasyeva, S. S. Pavlov, and S. F. Gundorina, J. Pharm. Biomed. Anal., 30, 87 (2002). https://doi.org/10.1016/S0731-7085(02)00199-1
  20. A. Vonshak, Biotechnol. Adv., 8, 709 (1990). https://doi.org/10.1016/0734-9750(90)91993-Q
  21. T. Ogawa and G. Terui, J. Ferment. Technol., 48, 361 (1970).
  22. M. G. Morais and J. A. V. Costa, J. Biotechnol., 129, 439 (2007). https://doi.org/10.1016/j.jbiotec.2007.01.009
  23. C. C. Reichert, C. O. Reinehr, and J. A. V. Costa, Braz. J. Chem. Eng., 23, 23 (2006). https://doi.org/10.1590/S0104-66322006000100003
  24. A. Vonshak, A. Abeliovich, S. Boussiba, S. Arad, and A. Richmond, Biomass, 2, 175, (1982). https://doi.org/10.1016/0144-4565(82)90028-2
  25. D. Soletto, L. Binaghi, L. Ferrari, A. Lodi, J. C. M. Carvalho, M. Zilli, and A. Converti, Biochem. Eng. J., 39, 369 (2008). https://doi.org/10.1016/j.bej.2007.10.007
  26. Y. S. Yun, J. M. Prak, and B. volesky, Kor. J. Chem. Eng., 37, 800 (1999).
  27. C. O. Rangel-Yagui, E. D. G. Danesi, J. C. M. Carvalho, and S. Sato, Bioresour. Technol., 92, 133 (2004). https://doi.org/10.1016/j.biortech.2003.09.002
  28. J. Lu, G. Yoshizaki, K. Sakai, and T. Takeuchi, Fish. Sci., 68, 51 (2002). https://doi.org/10.1046/j.1444-2906.2002.00388.x
  29. L. H. Pelizer, E. D. G. Danesi, C. O. Rangel, C. E. N. Sassano, J. C. M. Carvalho, S. Sato, and I. O. Moraes, J. Food Eng., 56, 371 (2003). https://doi.org/10.1016/S0260-8774(02)00209-1