State-of-the-art Studies on Infrasound Monitoring in Korea

국내 인프라사운드 관측기술의 최신 연구 동향

  • Che, Il-Young (Earthquake Research Center, Korea Institute of Geoscience and Mineral Resources) ;
  • Lee, Hee-Il (Earthquake Research Center, Korea Institute of Geoscience and Mineral Resources) ;
  • Jeon, Jeong-Soo (Earthquake Research Center, Korea Institute of Geoscience and Mineral Resources) ;
  • Shin, In-Cheul (Earthquake Research Center, Korea Institute of Geoscience and Mineral Resources) ;
  • Chi, Heon-Cheol (Earthquake Research Center, Korea Institute of Geoscience and Mineral Resources)
  • 제일영 (한국지질자원연구원 지진연구센터) ;
  • 이희일 (한국지질자원연구원 지진연구센터) ;
  • 전정수 (한국지질자원연구원 지진연구센터) ;
  • 신인철 (한국지질자원연구원 지진연구센터) ;
  • 지헌철 (한국지질자원연구원 지진연구센터)
  • Received : 2010.07.31
  • Accepted : 2010.08.19
  • Published : 2010.08.31

Abstract

Korea Institute of Geoscience and Mineral Resources (KIGAM) has installed and operated seven seismoacoustic (infrasound) arrays as well as seismic stations in Korea. The seismo-acoustic array, which consists of co-located seismometers and micro-barometers, can observe both seismic and infrasonic signals from distant explosive phenomena. The infrasound is defined as low frequency (<20 Hz) acoustic waves in atmosphere. In particular, it can be detectable at long distance due to its low energy attenuation during propagation in atmosphere. KIGAM adopted the infrasound technology to discriminate surface explosions from earthquakes only because the surface explosion generally generates infrasound following seismic signal. In addition to surface explosions, these arrays have detected diverse geophysically natural and artificial phenomena, such as infrasound signal from the North Korean nuclear test. This review introduced the state-of-the-art studies and examples of infrasonic signals in and around the Korean Peninsula. In conclusion, infrasound technology would be clearly accepted itself as a new Earth monitoring technology by expanding its detectable regime to lithosphere-Earth surface-atmosphere. In future, an advanced technology, which allows to analyze seismic and infrasonic wave fields together, will enlarge the understanding of geophysical phenomena and be used as a robust analysis method for remote explosive phenomena in the broad infrasound regime.

Acknowledgement

Supported by : 한국연구재단

References

  1. 제일영, 전정수, 2006, 인프라사운드 관측을 통한 지구물리학적 연구, 자원환경지질, 39(4), 495-505.
  2. Arrowsmith, S. J., R. Burlacu, R. Whitaker, and G. Randall, 2009, A repeating secondary source of infrasound from the Wells, Nevada, earthquake sequence, Geophys. Res. Lett., 36, L11817, doi:10.1029/2009GL038363. https://doi.org/10.1029/2009GL038363
  3. Bedard, A. J., and T. M. Georges, 2000, Atmospheric infrasound, Physics Today, Mar, 32-37.
  4. Brown, D. J., C. N. Katz, R. Le Bras, M. P. Flanagan, J. Wang, and A. K. Gault, 2002, Infrasonic signal detection and source location at the Prototype Data Centre, Pure Appl. Geophys., 159, 1081.1125. https://doi.org/10.1007/s00024-002-8674-2
  5. Cansi, Y., 1995, An automatic seismic event processing for detection and location: The PMCC method, Geophys. Res. Lett., 22, 1021-1024. https://doi.org/10.1029/95GL00468
  6. Che, I.-Y., H.-I. Lee, J.-S. Jeon, and T.-S. Kang, 2007, An analysis of the infrasound signal from the Miyagi-Oki earthquake in Japan on 16 August 2005, Earth Planets and , 59, e9-e12.
  7. Che, I.-Y., T. S. Kim, J.-S. Jeon, and H.-I. Lee, 2009, Infrasound observation of the apparent North Korean nuclear test of 25 May 2009, Geophys. Res. Lett., 36, L22802, doi:10.1029/ 2009GL041017. https://doi.org/10.1029/2009GL041017
  8. Che, I-.Y., B. Stump, and H.-I. Lee, 2010, Experimental Characterization of Seasonal Variations in Infrasonic Travel Times on the Korean Peninsula with Implications for Infrasound Event Location, Geophys. J. Int., in submission.
  9. Christie, D. R. and P. Campus, 2010, The IMS Infrasound Network: Design and Estabilishment of Infrasound Stations, in Le Pichon, A., E. Blanc, and A. Hauchecorne, Infrasound monitoring for atmospheric studies, Springer, 29-75.
  10. Campus, P. and D. R. Christie, 2010, Worldwide observations of infrasonic waves, in Le Pichon, A., E. Blanc, and A. Hauche corne, Infrasound monitoring for atmospheric studies, Springer, 185-234.
  11. Donn, W. L., R. L. Pfeffer, and M. Ewing, 1963, Propagation of Air waves from nuclear explosions, Science, 139, 307-317. https://doi.org/10.1126/science.139.3552.307
  12. Evers, L. G., L. Ceranna, H. W. Haak, A. Le Pichon, and R. W. Whitaker, 2007, A Seismoacoustic Analysis of the Gas-Pipeline Explosion near Ghislenghien in Belgium, Bull. Seism. Soc. Am., 97, doi:10.1785/0120060061, 417-425. https://doi.org/10.1785/0120060061
  13. Hagerty M. T., W. Y. Kim, and P. Martysevich, 2002, Infrasound detection of large mining blasts in Kazakstan, Pure Appl. Geophys., 159, 1063-1079. https://doi.org/10.1007/s00024-002-8673-3
  14. Hetzer, C. H., R. Waxler, K. E. Gilbert, C. L. Talmadge, and H. E. Bass, 2008, Infrasound from hurricanes: Dependence on the ambient ocean surface wave field, Geophys. Res. Lett., 35, L14609, doi:10.1029/2008GL034614. https://doi.org/10.1029/2008GL034614
  15. Kang, T.-S., and C.-E. Baag, 2004, The 29 May 2004, Mw=5.1, offshore Uljin earthquake, Korea, Geosciences Journal, 8(2), 115-123. https://doi.org/10.1007/BF02910189
  16. Kim, T. S., Hayward, C., and Stump, B., 2004, Local infrasound signals from the Tokachi-Oki earthquake, Geophys. Res. Lett., doi:10.1029/2004GL021178.
  17. Le Pichon, A., P. Herry, P. Mialle, J. Vergoz, N. Brachet, M. Garcs, D. Drob, and L. Ceranna, 2005, Infrasound associated with 2004-2005 large Sumatra earthquakes and tsunami, Geoph. Res. Let., 32, L19802, doi:10.1029/2005GL023893. https://doi.org/10.1029/2005GL023893
  18. Lee, H. I., Che, I. Y., and Le Pichon, A., 2004, Infrasound network in Korea and observations of some interesting infrasonic events, paper presented at Infrasound Technology Workshop, Geoscience Australia, Hobart, Tasmania.
  19. Lee, H.-I., I.-Y. Che and A. Le Pichon, 2005, An analysis of infrasound signal from the 11th December 2004 Meteorite at Lanzhou in China, paper presented at Infrasound Technology Workshop, Tahiti.
  20. Matoza, R. S., A. Le Pichon, J. Vergoz, P. Herry, J.-M. Lalande, H-i. Lee, I.-Y. Che, and A. Rybin, 2010, Infrasonic observations of the June 2009 Sarychev Peak eruption, Kuril Islands: implications for infrasonic monitoring of explosive volcanism, J. Volcanol. Geotherm. Res., in submission.
  21. Murayama, T., M. Nogami, and N. Arai, 2006, Detected infrasound signals and noise condition of IS30, Japan, paper presented at Infrasound Technology Workshop, Geophysical Institute, Fairbanks, USA.
  22. Mutschlecner, J. P. and R. W. Whitaker, 2005, Infrasound from earthquakes, J. Geophys. Res., 110, D01108, doi:10.1029/ 2004JD005067. https://doi.org/10.1029/2004JD005067
  23. Rodgers, A. J. and W. R. Walter, 2002, Seismic Discrimination of the May 11, 1998 Indian Nuclear Test with Short-period Regional Data from Station NIL (Nilore, Pakistan), Pure Appl. Geophys., 159, 679-700. https://doi.org/10.1007/s00024-002-8654-6
  24. Shin, J. S., D.-H. Sheen, and G. Kim, 2009, Regional observations of the second North Korean nuclear test on 2009 May 25, Geophys. J. Int., 180, 243-250.
  25. Stump, B., M. S. Jun, C. Hayward, J. S. Jeon, I. Y. Che, K. Thomason, S. M. House, and J. McKenna, 2004, Small- Aperture Seismo-Acoustic Arrays: Design, Implementation, and Utilization, Bull. Seism. Soc. Am., 94(1), 220-236. https://doi.org/10.1785/0120020243
  26. Waldemark, K., 1997, A statistical study of propagation of infrasound generated during supersonic flights, IRF Scientific Report 243 March 1997, ISSN 0284-1703.
  27. Whitaker, R. W., T. D. Sondoval, and J. P. Mutschlecner, 2003, Recent infrasound analysis, in Proc. 25th Seismic Res. Rev. - Nuclear Explosion Monitoring: Building the Knowledge Base, pp. 646-654, Tucson, Ariz., USA.
  28. Wilson, C., 2005, Infrasound from Auroral Electrojet Motions at I53US, InfraMatics, 10.