DOI QR코드

DOI QR Code

Electrical Characteristics of Porous Carbon Electrode According to NaCl Electrolyte Concentration

NaCl 전해질 농도 변화에 따른 다공질 탄소전극의 전기적 특성

  • Kim, Yong-Hyuk (Department of Electrical Engineering, Kyung Won University)
  • 김용혁 (경원대학교 전기공학과)
  • Received : 2010.08.06
  • Accepted : 2010.09.14
  • Published : 2010.10.01

Abstract

Porous carbon electrodes with wooden materials are manufactured by molding carbonized wood powder. Electrical properties of the interface for electrolyte and porous carbon electrode are investigated from viewpoint of NaCl electrolyte concentration, capacitance and complex impedance. Density of porous carbon materials is 0.47~0.61 g/$cm^3$. NaCl electrolytic absorptance of the porous carbon materials is 5~30%. As the electrolyte concentration increased, capacitance is increased and electric resistance is decrease with electric double layer effect of the interface. The electric current of the porous carbon electrode compared in the copper and the high density carbon electrode was improved on a large scale, due to a increase in surface area. The circuit current increased as the distance between of the porous carbon electrode and the zinc electrode decreased, due to increase in electric field. Experimental results indicated that the current properties of galvanic cell could be improved by using porous carbon electrode.

References

  1. J. A. Leel, Sensor. Actuat. B-Chem. B129, 372 (2008).
  2. Y. Tzeng, Y. Chen, and C. Liu, Diam. Relat. Mat. 12, 774 (2003). https://doi.org/10.1016/S0925-9635(02)00355-2
  3. J. Hone, M. C. Llaguno, and N. M. Nemes, Appl. Phys. Lett. 77, 666 (2000). https://doi.org/10.1063/1.127079
  4. J. S. Kim and Y. T. Park, J. KIEEME 12, 606 (1999).
  5. K. Sheem, Y. H. Lee, and H. S. Lim, J. Power Sources 158, 1425 (2006). https://doi.org/10.1016/j.jpowsour.2005.10.077
  6. W. S. Choi and B. U. Hong, J. KIEEME 19, 1010 (2006).
  7. A. J. Bard and R. F. Faulkner, Electrochemical methods, 2nd ed. (John Wiley, NY, 2000) p. 160.
  8. R. Parsons, Chem Rev. 90, 813 (1990). https://doi.org/10.1021/cr00103a008
  9. W. M. Saslow, Am. J. Phys. 67, 574 (1999). https://doi.org/10.1119/1.19327
  10. A. Hassibi, R. Navid, R. W. Dutton, and T. H. Lee, J. Appl. Phys. 96, 1074 (2004). https://doi.org/10.1063/1.1755429
  11. B. E. Conway, Electrochemical supercapacitors: scientific fundamentals and technological applications (Kluwer Academic Publishers, NY, 1999) p. 45.
  12. C. M. A. Brett and A. M. O. Brett, Electrochemistry: principles, methods, and applications (Oxford Univ Press, Oxford, 1993) p. 380.
  13. A. A. Rahman, S. Bhat, and S. Bhansali, J. Electrochemi. Soci. 155, 355 (2008).
  14. S. Chen and R. W. Murray, J. Phys. Chem. 103B, 9996 (1999).