Resistance and Susceptibility of Diamondback Moth, Plutella xylostella Strains Collected from Different Region in Korea to Bacillus thuringiensis

국내 지역별 채집계통 및 감수성계통 배추좀나방에 대한 Bacillus thuringiensis 제품의 생물활성 비교

  • Kim, Young-Rim (Dept. of Applied Biology, College of Agriculture and Life Science, Chungnam National University) ;
  • Cho, Min-Su (Dept. of Applied Biology, College of Agriculture and Life Science, Chungnam National University) ;
  • Oh, Se-Mun (Dept. of Applied Biology, College of Agriculture and Life Science, Chungnam National University) ;
  • Kim, Sung-Woo (Dept. of Applied Biology, College of Agriculture and Life Science, Chungnam National University) ;
  • Youn, Young-Nam (Pesticide Safety Evaluation Division, National Academy of Agricultural Science, Rural Development Adminstration) ;
  • Yu, Yong-Man (Pesticide Safety Evaluation Division, National Academy of Agricultural Science, Rural Development Adminstration)
  • 김영림 (농촌진흥청 국립농업과학원 농자재평가과) ;
  • 조민수 (농촌진흥청 국립농업과학원 농자재평가과) ;
  • 오세문 (농촌진흥청 국립농업과학원 농자재평가과) ;
  • 김성우 (농촌진흥청 국립농업과학원 농자재평가과) ;
  • 윤영남 (충남대학교 농업생명과학대학 응용생물학과) ;
  • 유용만 (충남대학교 농업생명과학대학 응용생물학과)
  • Received : 2010.03.29
  • Accepted : 2010.04.12
  • Published : 2010.06.30

Abstract

Six populations of the diamondback moth, Plutella xylostella, were collected from the different national areas for resistance and reared in laboratory for two sensitive population. These populations of P. xylostella were examined the developed resistance against commercial products of Bacillus thuringiensis. There were 3 products with B. thuringiensis subsp. kurstaki including Tyuneup$^{(R)}$, Thuricide$^{(R)}$ and Geumulmang$^{(R)}$ and 2 products with B. thuringiensis subsp. aizawai including Tobagi$^{(R)}$ and Scorpion$^{(R)}$. The sensitive population of diamondback moths were provided from National Academy of Agricultural Science (NP) and Highland Agriculture Research Center (GR population) and field populations were caught from 6 different national areas. Resistance against Tyuneup$^{(R)}$ was developed 4.8 and 2.5 times in SP and HS compared with GR population of diamondback moth, respectively. In case of Geumulmang$^{(R)}$, it was developed 9.9 and 6.8 times in SP and NM population compared with NP population, respectively. Otherwise, Tobagi$^{(R)}$ was showed higher resistance in HS than any other population compared with GR population, however, Scorpion$^{(R)}$ that is a same strain with Tobagi$^{(R)}$, was showed only double resistance to SP population. It was supposed that the development of resistance to B. thuringiensis might be caused by the continuous application of the specific commercial product at the specific area. So, we need to use the commercial products of B. thuringiensis in rotation with different B. thuringiensis strains. In the other hand, when HS population with highest resistance were reared in laboratory, their resistance ratio was rapidly dropped to 1.1 times at second generation. We have to examined the resistance mechanism of the diamondback moth to B. thuringiensis strains.

Keywords

BT commercial product;Diamondback moth;Resistance;Bioassay;Bacillus thuringiensis

Acknowledgement

Supported by : 농촌진흥청 국립농업과학원

References

  1. Alejandra B., S. S. Gill and M. Soberon (2007) Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon. 49:423-435. https://doi.org/10.1016/j.toxicon.2006.11.022
  2. Ankersmit, G. W. (1953) DDT resistance in Plutella maculipennis (Curt.) (Lep.) in Java. Bull. Entomol. Res. 44:421-425 https://doi.org/10.1017/S0007485300025530
  3. Diaz-Gomez, O. (1992) Susceptibilidad de la palomilla dorso de diamante Plutella xylostella a insectididas organosinteticosy microbiales. Tesis de Maestria en Ciencias, Colegio de Postgraduados, Chapingo, Mexico.
  4. Diaz-Gomez O., J. C. Rodriguez, A. M. Shelton, T. A. Lagunes and M. R, Bujanos (2000) Susceptibility of Plutella xylotella (L.) (Lepidoptera: Plutellidae) populations in Mexico to commercial formulations of Bacillus thuringiensis. J.Economic Entomol. 93:963-970. https://doi.org/10.1603/0022-0493-93.3.963
  5. Diaz-Gomez, O., Lagunes-Tejeda, A., H. Sanchez-Arroyo and R. Alatorrerosas (1994) Susceptibility of Plutella xylostella to microbial insecticides. Southwest. Entomol. 19:403-408.
  6. Dilawari, V. K., Khanna, V., Gupta, V. K., H. S. Dhaliwal and G. S. Dhaliwal (1996) Toxicity of Bacillus thuringiensis var. kurstaki $\delta$-endotoxin proteins from HD-1 and HD-73 strains against Plutella xylostella (L.). Allelopathy J. 3:491-496.
  7. Ferre, J., Real M. D., Van Rie J., S. Jansens and M. Peferoen (1991) Resistance to the Bacillus thuringiensis bioinsecticide in a field population of Plutella xylostella is due to a change in a midgut membrane receptor. Proceedings of the National Academy of Sciences of the United States of America. 88:5119-5123.
  8. Ibarra, J. (1993) Desarrollo de resistencia hacia Bacillus thuringiensis, In Memorias del X X V II Congreso Nacional de Entomologia. Entomological Society of Mexico, Cholula, Pue. Mexico. pp, 231-232.
  9. McGaughey, W. H. (1985) Insect resistance to the biological insecticide Bacillus thuringiensis. Science 229:193-195. https://doi.org/10.1126/science.229.4709.193
  10. Miyata, T., T. Saito and V. Noppun (1986) Studies on the mechanism of diamondback moth resistance of insecticides. In (N. S. Talekar ed.) Diamond back Moth Management : Proceedings of the First International Workshop, Avrdc. 347-357.
  11. Mohan, M., and G. T. Gujar (2001) Toxicity of Bacillus thuringiensis strains and commercial formulationsto the diamondback moth, Plutella xylostella (L.). Crop Protection. 20:311-316. https://doi.org/10.1016/S0261-2194(00)00157-5
  12. Perez, C. J. and A. M. Shelton (1997) Resistance of Plutella xylostella (Lepidoptera: Plutellidae) to Bacillus thuringiensis Berliner in Central America. J. Econ. Entomol. 90:87-93. https://doi.org/10.1093/jee/90.1.87
  13. Schnepf H. E. (1995) Bacillus thuringiensis toxins; regulation, activities and structural diversity. Curr. Opin.Biotech. 6:305-312. https://doi.org/10.1016/0958-1669(95)80052-2
  14. Shelton, A. M., Robertson, J. L., Tang, J. D., Perez, C., Eigenbrode, S. D., Preisler, H. K., W. T. Wilsey and R. J. Cooley (1993) Resistance of diamondback moth (Lepidoptera: Plutellidae) to Bacillus thuringiensis subspecies in the field. J. Econ. Entomol. 86:697-705. https://doi.org/10.1093/jee/86.3.697
  15. Sun, C. N. (1992) Insecticide resistance in diamondback moth.In: Talekar, N. S. (Ed.), Management of Diamondback Moth and Other crucifer pests. Proceedings of the Second International Workshop, Avrdc. Taiwan. pp. 419-426.
  16. Tabashnik, B. E., Groeters, F. R., N. Finson and M. W. Johnson (1994) Instability of resistance to Bacillus thuringiensis. Biocontrol Science Technol. 4:419-426. https://doi.org/10.1080/09583159409355352
  17. Tabashnik, B. E., J. M. Schwartz, N. Finson and M. W. Johnson (1992) Inheritance of resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera : Plutellidae). J. Econ. Entomol. 85:1046-1055. https://doi.org/10.1093/jee/85.4.1046
  18. Tabashnik, B. E., N. Finson and M. W. Johnson (1990) Field development of resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera, Plutellidae). J. Econ. Entomolo. 83:1671-1676. https://doi.org/10.1093/jee/83.5.1671
  19. Tabashnik, N. F., Marshall, W. Johnson and J. M. William (1993) Resistance to toxins from Bacillus thuringiensis subsp. kurstaki Causes Minimal cross-Resistance to B.thuringiensis subsp. aizawai in the Diamondback Moth (Lepioptera:Plutellidae). Appl. Environ. Microbiol. 1332-1335.
  20. Talekar, N. S. and A. M. Shelton (1993) Biology, ecology and management of the diamondback moth. Annu. Rev. Entomol. 38:275-301. https://doi.org/10.1146/annurev.en.38.010193.001423
  21. Tanaka, H. and Y. Kimura (1991) Resistance to BT formulation in diamondback moth, Plutella xylostella L., on watercress. Jpn. J. Appl. Entomol. Zool. 35:253-255. https://doi.org/10.1303/jjaez.35.253
  22. Tang J. D, Shelton A. M, Van Rie J, de Roeck S, and W. J. Moar (1996) Toxicity of Bacillus thuringiensis spore and crystal protein to resistant diamondback moth(Poutella xylostella). Appl. Environ. Microbiol. 62:564-569.
  23. Thiery, I. and E. Frachon (1997) Identification, isolation, culture and preservation of entomopathogenic bacteria. In: Lacey, L. A. (Ed.), Manual of techniques in Insect Pathology. Academic Press, London, pp. 55-78.
  24. Verkerk, R. H. J. and D. J. Wright (1997) Field-based studies with the diamondback moth tritrophic system in Cameron Highlands of Malaysia : Implications for pest management. International J. Pest Management. 43:27-33. https://doi.org/10.1080/096708797228942
  25. Zhao, J. A., H. L. Collins, Y. X., Li, R. F. L., Mau, G. D., Thompson, M., Hertlein, J. T. Andaloro, R. Boykin and A. M. Shelton (2006) Monitoring of diamondback moth (Lepidoptera :Plutellidae) resistance to spinosad, indoxacarb, and emamectin benzoate. J. Econ. Entomol. 99:176-181. https://doi.org/10.1603/0022-0493(2006)099[0176:MODMLP]2.0.CO;2
  26. 김호산, 박현우, 김상현, 유용만, 서숙재 그리고 강석권. (1993) 새로 분리한 Bacillus thuringiensis NT0423균주의 내독소 단백질 에 대한 이중 특이성. 한응곤지. 32;426-432.
  27. 김명화, 이승찬. (1991) 남부지방에서 배추좀나방의 발생생태에 관 한 연구. 한응곤지. 30:169-173.
  28. 길미라, 김다아, 최수연, 백승경, 김진수, 김대용, 황인천, 유용만. (2007) 국내에서 생산된 Bacillus thuringiensis 살충제의 특성. 농약과학회지. 11:59-66.
  29. 송승석. (1991) BT제에 대한 배추좀나방의 약제저항성. 한응곤지. 30:291-293.
  30. 이승찬, 조영식, 김도익. (1993) 배추좀나방의 독성시험방법비교와 지역별 약제저항성에 관한 연구. 한응곤지. .32:323-329.
  31. 조영식, 이승찬. (1994) 단제도태에 의한 배추좀나방의 약제저항성 발달과 교차저항성에 관한 연구. 한응곤지. 33:242-249.