DOI QR코드

DOI QR Code

Orange Phosphorescent Organic Light-emitting Diodes Using a Spirobenzofluorene-type Phospine Oxides as Host Materials

  • Jeon, Young-Min ;
  • Lee, In-Ho ;
  • Lee, Chil-Won ;
  • Lee, Jun-Yeob ;
  • Gong, Myoung-Seon
  • Received : 2010.07.29
  • Accepted : 2010.09.02
  • Published : 2010.10.20

Abstract

Spiro-type orange phosphorescent host materials, 9-diphenylphosphine oxide-spiro[fluorene-7,9'-benzofluorene] (OPH-1P) and 5-diphenylphosphine oxide-spiro[fluorene-7,9'-benzofluorene] (OPH-2P) were successfully prepared by a lithiation reaction followed by a phosphination reaction with diphenylphosphinic chloride. The EL characteristics of OPH-1P and OPH-2P as orange host materials doped with iridium(III) bis(2-phenylquinoline)acetylacetonate ($Ir(pq)_2acac$) were evaluated. The electroluminescence spectra of the ITO (150 nm)/DNTPD (60 nm)/NPB (30 nm)/OPH-1P or OPH-2P: $Ir(pq)_2acac$ (30 nm)/BCP (5 nm)/$Alq_3$ (20 nm)/LiF (1 nm)/Al (200 nm) devices show a narrow emission band with a full width at half maximum of 75 nm and $\lambda_{max}$ = 596 nm. The device obtained from OPH-1P doped with 3% $Ir(pq)_2acac$ showed an orange color purity of (0.580, 0.385) and an efficiency of (14 cd/A at 7.0 V). The ability of the OPH-P series to combine a high triple energy with a low operating voltage is attributed to the inductive effect of the P=O moieties and subsequent energy lowering of the LUMO, resulting in the enhancement of both the electron injection and transport in the device. The overall result is a device with an EQE > 8% at high brightness, but operating voltage of less than 6.4 V, as compared to the literature voltages of ~10 V.

Keywords

Phosphine oxide;Orange;Host;Phosphorescent OLED;Spirobenzofluorene

References

  1. Baldo, M. A.; O'Brien, D. F.; You, Y.; Shoustikov, A.; Sibley, S.; Thompson, M. E.; Forrest, S. R. Nature 1998, 395, 151. https://doi.org/10.1038/25954
  2. O'Brien, D. F.; Baldo, M. A.; Thompson, M. E.; Forrest, S. R. Appl. Phys. Lett. 1999, 74, 442. https://doi.org/10.1063/1.123055
  3. Baldo, M. A.; Lamansky, S.; Burrows, P. E.; Thompson, M. E.; Forrest, S. R. Appl. Phys. Lett. 1999, 75, 4. https://doi.org/10.1063/1.124258
  4. D'Andrade, B. W.; Forrest, S. R.; Chwang, A. B. Appl. Phys. Lett. 2003, 83, 3858. https://doi.org/10.1063/1.1624473
  5. Burrows, P. E.; Padmaperuma, A.; Sapochak, L. S.; Djurovich, P.; Thompson, M. E. Appl. Phys. Lett. 2006, 88, 183503. https://doi.org/10.1063/1.2193429
  6. Padmaperuma, A. B.; Sapochak, L. S.; Burrows, P. E. Chem. Mater. 2006, 18, 2389. https://doi.org/10.1021/cm0600677
  7. Vecchi, P. A.; Padmaperuma, A. B.; Qiao, H.; Sapochak, L. S.; Burrows, P. E. Inorg. Chem. 2006, 8, 4211.
  8. Ha, M. Y.; Moon, D. G. Appl. Phys. Lett. 2008, 93, 043306. https://doi.org/10.1063/1.2960348
  9. Matsushima, T.; Adachi, C. Appl. Phys. Lett. 2006, 89, 253506. https://doi.org/10.1063/1.2410236
  10. Jeon, S. O.; Jeon, Y. M.; Kim, J. W.; Lee, C. W.; Gong, M. S. Org. Electron. 2008, 9, 522. https://doi.org/10.1016/j.orgel.2008.02.016
  11. Kim, K. S.; Jeon, Y. M.; Kim, J. W.; Lee, C. W.; Gong, M. S. Org. Electron. 2008, 9, 797. https://doi.org/10.1016/j.orgel.2008.05.013
  12. Jeon, Y. M.; Kim, J. W.; Lee, C. W.; Gong. M. S. Dyes Pigments 2009, 83, 66. https://doi.org/10.1016/j.dyepig.2009.03.013
  13. Kim, K. S.; Jeon, Y. M.; Lee, H. S.; Kim, J. W.; Lee, C. W.; Jang, J. G.; Gong, M. S. Synth. Met. 2008, 158, 870. https://doi.org/10.1016/j.synthmet.2008.06.005
  14. Kim, J. H.; Jeon, Y. M.; Jang, J. G.; Ryu, S.; Chang, H. J.; Lee, C. W.; Kim, J. W.; Gong, M. S. Bull. Korean Chem. Soc. 2009, 30, 647. https://doi.org/10.5012/bkcs.2009.30.3.647
  15. Jeon, S. O.; Lee, H. S.; Jeon, Y. M.; Kim, J. W.; Lee, C. W.; Gong, M. S. Bull. Korean Chem. Soc. 2009, 30, 863. https://doi.org/10.5012/bkcs.2009.30.4.863
  16. Kim, K. S.; Jeon, Y. M.; Kim, J. W.; Lee, C. W.; Gong, M. S. Dyes Pigments 2009, 81, 174. https://doi.org/10.1016/j.dyepig.2008.09.023
  17. Jeon, S. O.; Jeon, Y. M.; Kim, J. W.; Lee, C. W.; Gong, M. S. Synth. Met. 2009, 159, 1147. https://doi.org/10.1016/j.synthmet.2009.01.053
  18. Jeon, S. O.; Yook, K. S.; Joo, C. W.; Son, H. S,; Jang, S. E.; Lee, J. Y. Org. Electron. 2009, 10, 998. https://doi.org/10.1016/j.orgel.2009.03.013
  19. Padmaperuma, A. B.; Sapochak, L. S.; Burrows, P. E. Chem. Mater. 2006, 18, 2389. https://doi.org/10.1021/cm0600677
  20. Jeon, Y. M.; Lee, I. H.; Lee, H. S.; Gong, M. S. Dyes Pigments, in press.
  21. Dunlap, D. H.; Parris, P. E.; Kenkre, V. M. Phys. Rev. Lett. 1996, 77, 542 https://doi.org/10.1103/PhysRevLett.77.542

Cited by

  1. Phosphine oxide derivatives for organic light emitting diodes vol.22, pp.10, 2012, https://doi.org/10.1039/C1JM14832J
  2. A phenothiazine/dimesitylborane hybrid material as a bipolar transport host of red phosphor vol.4, pp.40, 2016, https://doi.org/10.1039/C6TC03335K
  3. The new phosphorescent Iridium complexes containing naphthylisoquinoline ligands for WOLEDs vol.644, pp.1, 2017, https://doi.org/10.1080/15421406.2016.1277495
  4. Wide range phosphorescent iridium complexes chelated with 2-naphtyl-thienopyridyl ligands vol.651, pp.1, 2017, https://doi.org/10.1080/09273948.2017.1338894
  5. Synthesis and photophysical studies of red phosphorescent Ir(III) complexes chelated with a thienopyridyl ligand for white organic light-emitting diodes vol.659, pp.1, 2017, https://doi.org/10.1080/15421406.2018.1450951
  6. The broad range red phosphorescent iridium (III) complex containing new isoquinoline ligands for white organic light-emittimg diodes vol.659, pp.1, 2017, https://doi.org/10.1080/15421406.2018.1450948