Comparison of Nano Particle Size Distributions by Different Measurement Techniques

  • Bae, Min-Suk (Atmospheric Sciences Research Center, University at Albany, State University of New York) ;
  • Oh, Joon-Seok (Division of Business, School of Business & Economy, Sook Myung Women's University)
  • 투고 : 2010.03.16
  • 심사 : 2010.08.20
  • 발행 : 2010.04.30


Understanding the Nano size particles is of great interest due to their chemical and physical behaviors such as compositions, size distributions, and number concentrations. Therefore, accurate measurements of size distributions and number concentrations in ultrafine particles are getting required because expected losses such as diffusion for the instrument system from ambient inlet to detector are a significant challenge. In this study, the data using the computed settling losses, impaction losses, diffusion losses for the sampling lines (explored different sampling line diameters, horizontal length, number of bending, line angles, flow rates with and without a bypass), and diffusion losses for the Scanning Mobility Particle Sizers are examined. As expected, the settling losses and impaction losses are very minor under 100 nm, however, diffusion loss corrections for the sampling lines and the size instrument make a large difference for any measurement conditions with high numbers of particles smaller mobility size. Both with and without the loss corrections, which can affect to size distributions and number concentrations are described. First, 80% or more of the smallest particles (less than 10 nm) can be lost in the condition of a flow rate of 0.3 liter per minute and the length of sampling line of 1.0 m, second, total number concentrations of measurements are quite significantly affected, and the mode structure of the size distribution changes dramatically after the loss corrections applied. With compared to the different measurements, statistically diffusion loss corrections yield a required process of the ambient particle concentrations. Based on the current study, as an implication, a possibility of establishing direct revelation mechanisms is suggested.



  1. Birmili, W., F. Stratmann, A. Wiedensohler, D. Covert,L.M. Russell, and O. Berg (1997) Determinationof differential mobility analyzer transfer functionsusing identical instruments in series, AerosolSci. Technol., 27, 215-223.
  2. Brockman, J.E. (2001) Sampling and transport of aerosols;in aerosol measurement: principles, techniques,and applications, 2nd. Edition, ed. P.A. Baron &K. Willeke. John Wiley & Sons, NY.
  3. Chen, D.-R., D.Y.H. Pui, D. Hummes, H. Fissan, F.R.Quant, and G.J. Sem (1998) Design and evaluationof a nanometer aerosol differential mobilityanalyzer (Nano-DMA), J. Aerosol Sci., 29, 497-509.
  4. Clarkson, K.W., R.L. Miller, G.A. Jenz, and F.B. Cross(1998) West business law, p. 827.
  5. Dal Maso, M., M. Kulmala, I. Riipinen, R. Wagner, T.Hussein, P.P. Aalto, and K.E.J. Lehtinen (2005)Formation and growth of fresh atmospheric aerosols:eight years of aerosol size distribution datafrom SMEAR II, Hyytiala, Finland, Boreal Environ.Res., 10, 323-336.
  6. Desantes, J.M., V. Bermudez, J.M. Garc, and E. Fuentes(2005) Effects of current engine strategies on theexhaust aerosol particle size distribution from aHeavy-Duty Diesel Engine, J. Aerosol Sci., 36,1251-1276.
  7. Garcia, D. (2005) Monotonicity in direct revelation mechanisms,J. Econ. Lett., 88, 21-26.
  8. Frank, B.P., S. Saltiel, O. Hogrefe, J. Grygas, and G.G.Lala (2008) Determination of mean particle sizeusing the electrical aerosol detector and the condensationparticle counter: comparison with thescanning mobility particle sizer, J. Aerosol Sci.,39, 19-29.
  9. Gormley, P.G. and M. Kennedy (1949) Diffusion from astream flowing through a cylindrical tube, Proc IrAcad, 52A, 163-169.
  10. Hinds, W.C. (1982) Aerosol technology: Properties, Behavior,and Measurement of Airborne Particles,John Wiley & Sons, NY.
  11. Hogrefe, O., G.G. Lala, B.P. Frank, J.J. Schwab, and K.L.Demerjian (2006) Field evaluation of a TSI model3034 scanning mobility particle sizer in NewYork City: Winter 2004 intensive campaign,Aerosol Sci. Technol, 753-762.
  12. Hurwicz, L. and T. Marschak (1985) Discrete allocationmechanism: Dimensional requirements for resource-allocation mechanisms when outcomesare unbounded, J. Complexity, 1, 264-303.
  13. Jeong, C.-H., G.J. Evans, P.K. Hopke, D. Chalupa, andM.J. Utell (2006) Influence of atmospheric dispersionand new particle formation events on ambient particle number concentration in rochester, United States, and Toronto, Canada, J. AirWaste Manage. Assoc., 56, 431-443.
  14. Jeong, C.-H., P.K. Hopke, D. Chalupa, and M. Utell (2004)Characteristics of nucleation and growth eventsof ultrafine particles measured in rochester, NY,Environ. Sci. Technol., 38, 1933-1940.
  15. Kim, Y. and K.H. Ahn (2005) Monitoring of airborne fineparticle using SMPS in Ansan Area, 2005, J.Korean Soc. Atmos. Environ., 21(3), 295-301.
  16. Kulmala, M., H. Vehkamaki, T. Petaja, M. Dal Maso, A.Lauri, V.M. Kerminen, W. Birmili, and P.H.McMurry (2004) Formation and growth rates ofultrafine atmospheric particles: a review of observations,J. Aerosol Sci., 35, 143-176.
  17. Lee, J.W., H.S. Kim, and Y.I. Jeong (2006) Effects of particlemeasuring conditions on diesel nanoparticlesdistribution, 2006, J. Korean Soc. Atmos.Environ., 22(5), 653-660.
  18. Lee, Y.G., H.W. Lee, M.S. Kim, C.Y. Choi, and J. Kim(2008) Characteristics of particle formation eventsin the coastal region of Korea in 2005, Atmos.Environ., 42, 3729-3739.
  19. Marschak, T. (1985) Organization design, handbook ofMathematical Economics, 3, pp. 1359-1438.
  20. Park, K., G. Cho, and J. Kwak (2009) Development of anaerosol focusing-laser induced breakdown spectroscopy(Aerosol Focusing-LIBS) for determinationof fine and ultrafine metal aerosols, AerosolSci. Technol., 43(5), 375-386.
  21. Qian, S., H. Sakurai, and P.H. McMurry (2007) Characteristicsof regional nucleation events in urban east St. Louis, Atmos. Environ., 41, 4119-4127.
  22. Reineking, A. and J. Porstendorfer (1986) Measurementsof particle loss functions in a differential mobilityanalyzer (TSI, Model 3071) for different flowrates, Aerosol Sci. Technol., 5, 483-486.
  23. Rodrigue, J., M. Ranjan, P.K. Hopke, and S. Dhaniyala(2007) Performance comparison of scanningelectrical mobility spectrometers, Aerosol Sci.Technol., 41, 360-368.
  24. Stanier, C.O., A.Y. Khlystov, and S.N. Pandis (2004) Nucleationevents during the pittsburgh air qualitystudy: Description and relation to key meteorological,gas phase, and aerosol parameters, AerosolSci. Technol., 38, 253-264, 2004.
  25. TSI, Inc. (2006) Scanning mobility particle sizer (SMPS) spectrometer diffusion loss correction, application note SMPS-001. Shoreview, MN.
  26. Wang, J., R.C. Flagan, and J.H. Seinfeld (2002) Diffusionallosses in particle sampling systems containingbends and elbows, J. Aerosol Sci., 33, 843-857.
  27. Watson, J.G., J.C. Chow, K. Park, and D.H. Lowenthal(2006) Nanoparticle and ultrafine particle eventsat the fresno supersite, J Air Waste Manage., 56,417-430.
  28. Watson, J.G., J.C. Chow, D.H. Lowenthal, and K.L.Magliano (2008) Estimating aerosol light scatteringat the fresno supersite, Atmos. Environ., 42,1186-1196.
  29. Woo, D., S. Lee, G. Bae, and T. Kim (2008) Comparisonof ultrafine particles monitored at a roadsideusing an SMPS and a TR-DMPS, J. Korean Soc.Atmos. Environ., 24(4), 404-414.

피인용 문헌

  1. Diurnal Size Distributions of Black Carbon by Comparison of Optical Particulate Measurements - Part I vol.32, pp.1, 2016,
  2. Comparison of Real Time Water Soluble Organic Carbon Measurements by Two PILS-TOC Analyzers vol.32, pp.6, 2016,