Numerical Computation of the Mass Transfer between Gaseous and Particulate Materials Considering the Hysteresis Phenomena of Atmospheric Aerosol

에어로솔의 이력현상을 고려한 대기 중 기체상/입자상 간의 물질전달 수치모사

  • Kim, Du-Eil (Process Systems Laboratory, Department of Chemical Engineering, Seoul National University of Technology) ;
  • Yoo, Kee-Youn (Process Systems Laboratory, Department of Chemical Engineering, Seoul National University of Technology)
  • 김두일 (서울산업대학교 화학공학과 공정시스템 연구실) ;
  • 류기윤 (서울산업대학교 화학공학과 공정시스템 연구실)
  • Received : 2010.01.27
  • Accepted : 2010.03.09
  • Published : 2010.04.30


It is well known that the atmospheric inorganic aerosol has the hysteresis phenomena depending on the history of relative humidity. However, the current computational researches have assumed that the physical/chemical state of atmospheric aerosol is only determined by a branch of hysteresis, efflorescence or deliquescence. In this work, we applied the MATLAB-based UHAEROm thermodynamics module to simulate the dynamic interaction between gaseous species $NH_3$ and $HNO_3$, and the two mono-disperse particulate populations in the course of efflorescence and deliquescence, respectively. We conducted the 10 case studies considering the particulate phase with the atmospherically prevailing chemical composition and found that the final states of the particles are determined through the qualitatively five different trajectories by the dynamic interaction between gaseous and two different kinds of particulates. As a result, we show that the coexistence of meta-stable and stable particles drives the different physical/chemical destination comparing with the ones generated from the solitary efflorescence or deliquescence branch.


Supported by : 기상청


  1. Amundson, N.R., A. Caboussat, J.W. He, J.H. Seinfeld, andK.Y. Yoo (2006a) A primal-dual active-set algorithmfor chemical equilibrium problems related tothe modeling of atmospheric inorganic aerosols,Journal of Optimization Theory and Applications,128(3), 469-498.
  2. Amundson, N.R., A. Caboussat, J.W. He, A.V. Martynenko,V.B. Savarin, J.H. Seinfeld, and K.Y. Yoo (2006b)A new inorganic atmospheric aerosol phase equilibriummodel (UHAERO), Atmospheric Chemistryand Physics, 6, 975-992.
  3. Hinds, W.C. (1999) Aerosol Technology, 2nd Ed., John Wileyand Sons, Canada.
  4. Jacobson, M.Z. (1999) Studying the effects of calcium andmagnesium on size-distributed nitrate and ammoniumwith EQUISOLV II, Atmospheric Environment,33, 3635-3649.
  5. Jacobson, M.Z., A. Tabazadeh, and R.P. Turco (1996) Simulatingequilibrium within aerosols and nonequilibriumbetween gases and aerosols, J. Geophysical Research,101(D4), 9079-9091.
  6. Kim Y.P., J.H. Seinfeld, and P. Saxena (1993a) Atmosphericgas-aerosol equilibrium I, thermodynamic model,Aerosol Science and Technology, 19, 157-181.
  7. Kim Y.P., J.H. Seinfeld, and P. Saxena (1993b) Atmosphericgas-aerosol equilibrium II, analysis of commonapproximations and activity coefficient methods,Aerosol Science and Technology, 19, 182-198.
  8. Kim Y.P. and J.H. Seinfeld (1995) Atmospheric gas-aerosolequilibrium III, thermodynamics of crustal elements$Ca^+,\;K^+,\;and\;Mg^{2+}$, Aerosol Science andTechnology, 22, 93-110.
  9. Martin, S.T., J.C. Schlenker, A. Malinowski, H.M. Hung, andY. Rudich (2003) Crystallization of atmosphericsulfate-nitrate-ammoniumparticles, GeophysicalResearch Letters, 30(21), 2102.
  10. Martin, S.T., J.C. Schlenker, J.H. Chelf, and O.W. Duckworth(2001) Structure-activity relationships of mineraldusts as heterogeneous nuclei for ammonium sulfatecrystallization from supersaturated aqueoussolutions, Environmental Science and Technology,35, 1624-1629.
  11. Meng, Z., J.H. Seinfeld, P. Saxena, and Y.P. Kim (1995) Atmosphericgas-aerosol equilibrium IV, thermodynamicsof carbonates, Aerosol Science and Technology, 22,131-154.
  12. Nenes, A., S.N. Pandis, and C. Pilinis (1998) ISORROPIA: Anew thermodynamic equilibrium model for multiphasemulticomponent inorganic aerosols, AquaticGeochemistry, 4, 123-152.
  13. Nenes, A., S.N. Pandis, and C. Pilinis (1999) Continued developmentand testing of a new thermodynamic aerosolmodule for urban and regional air quality models,Atmospheric Environment, 33, 1553-1560.
  14. Pilinis, C. and J.H. Seinfeld (1987) Continued development ofa general equilibrium model for inorganic multicomponentatmospheric aerosols, Atmospheric Environment,21(11), 2453-2466.
  15. Reid, R.C., J.M. Prausnitz, and B.E. Poling (1988) The Propertiesof Gases and Liquids, 4th Ed., McGraw-Hill,U.S.A.
  16. Rosenoern, T.R., D. Paulsen, and S.T. Martin (2009), The 1-by-3 Tandem differential mobility analyzer for measurement of the irreversibility of the hygroscopic growth factor, Aerosol Science and Technology, 43, 641-652.
  17. Rosenoern, T.R., J.C. Schlenker, and S.T. Martin (2008), Hygroscopicgrowth of multicomponent aerosol particlesinfluenced by several cycles of relative humidity,Journal of Physical Chemistry A, 112, 2378-2385.
  18. Seinfeid, J.H. and S.N. Pandis (2006) Atomospheric chemistryand physics, 2nd Ed., John Wiley and Sons, Canada.
  19. Tang, I.N. and H.R. Munkelwitz (1993) Composition andtemperature dependence of the deliquescence propertiesof hygroscopic aerosols, Atmospheric Environment,27(4), 467-473.
  20. Wang, J., A.A. Hoffmann, R. Park, D.J. Jacob, and S.T. Martin(2008a) Global distribution of solid and aqueoussulfate aerosols: effect of the hysteresis of particlephase transitions, Journal of Geophysical Research,113, D11207.
  21. Wang, J., D.J. Jacob, and S.T. Martin (2008b) Sensitivity ofsulfate direct climate forcing to the hysteresis ofparticle phase transitions, Journal of GeophysicalResearch, 113, D11206.
  22. Wise, M.E., T.A. Semeniuk, R. Bruintjes, S.T. Martin, L.M.Russell, and P.R. Buseck (2007) Hygroscopic behaviorof NaCl-bearing natural aerosol particlesusing environmental transmission electron microscopy,Journal of Geophysical Research, 112, D10224.
  23. Yoo, K.Y., J. He, and N.R. Amundson (2004) Canonical formand mathematical interpretation of electrolyte solutionsystems, Korean Journal of Chemical Engineering,21(2), 303-307.