DOI QR코드

DOI QR Code

Biocontrol of Isolated Cronobacter spp. (Enterobacter sakazakii) by Heat, Sanitizer, and Antibiotic

열, 살균소독제, 항생제에 의한 분리 Cronobacter spp. (Enterobacter sakazakii) 제어

  • Lee, Eun-Jin (Department of Food Science and Biotechnology, Kyungwon University) ;
  • Park, Jong-Hyun (Department of Food Science and Biotechnology, Kyungwon University)
  • 이은진 (경원대학교 식품생물공학과) ;
  • 박종현 (경원대학교 식품생물공학과)
  • Received : 2010.03.30
  • Accepted : 2010.06.09
  • Published : 2010.06.30

Abstract

Tolerance against heat, sanitizers, and antibiotics of 112 Cronobacter isolates classified by desiccation was determined to permit effective biocontrol in powdered foods. The isolates were classified into three groups: dry-tolerant (n=37), dry-sensitive (n=7), and dry-intermediate (n=68). The strains that were highly tolerant to drying also showed high heat tolerance that they seemed to have high tolerance to heat after dry stress in powdered foods like infant formula. Sodium hypochlorite and benzalkonium chloride concentrations necessary to achieve a 5-log reduction in viable counts (CFU/mL) were 15-25 ppm and 5-15 ppm, respectively. However, there was little difference of the efficacy of these sanitizers between dry-sensitive and -tolerant strains for planktonic cells suspended in 3% albumin. The minimal inhibition concentration (MIC) of $\beta$-lactam ampicillin was 64-128 ppm for 90% of the strains. The isolates were consistently sensitive to kanamycin and naldixic acid (MIC=4 ppm). Dry-tolerant strains displayed more antibiotic resistance than dry-sensitive strains. The results indicate that dry-tolerant Cronobacter isolates often possess heat and antibiotic resistance, indicated the need for potent sterilization treatments of powdered foods.

Keywords

powdered food;Cronobacter;desiccation;heat;sanitizer;antibiotic

Acknowledgement

Supported by : 농림기술관리센터

References

  1. Arad, I., Baras, M., Gofin, R., Bar-Oz, B., and Peleg, O. (2001) Dose parity affect the neonatal outcome of very-lowbirth- weight inrants? Eur. J. Obstet. Gynecol. Rep. Biol. 94, 283-289. https://doi.org/10.1016/S0301-2115(00)00308-0
  2. Barron, J. C. and Forsythe, S. J. (2007) Dry stress and survival time of Enterobacter sakakzakii and other Enterobacteriaceae in dehydrated powdered infant formula.. J. Food Prot. 70, 2111-2117.
  3. Breeuwer, P., Lardeau, A., Peterz, M., and Joosten, H. M. (2003) Desiccation and heat tolerance of Enterobacter sakazakii. J. Appl. Microbiol. 95, 967-973. https://doi.org/10.1046/j.1365-2672.2003.02067.x
  4. Block, C., Peleg, O., Minster, N., Bar-Oz, B., Simhon, A., Ard, I., and Shapiro, K. (2002) Cluster of neonatal infections in Jerusalem due to unusual biochemical variant of Enterobacter sakazakii. Euro. J. Clin. Microbiol. Infect. Dis. 21, 613-616. https://doi.org/10.1007/s10096-002-0774-5
  5. Dennison, S. K. and Morris, J. (2002) Multiresistant Enterobacter sakazakii wound infection in an adult. Infect. Med. 19, 533-535.
  6. Edelson-Mammel, S. G., Porteous, M. K., and Buchanan, R. L. (2005) Survival of Enterobacter sakazakii in dehydrated powdered infant formula. J. Food Prot. 68, 1900-1902.
  7. Friedemann M. (2007) Enterobacter sakazakii in food and beverages (other than infant formula and milk powder). Int. J. Food. Microbiol. 116, 1-10. https://doi.org/10.1016/j.ijfoodmicro.2006.12.018
  8. Edelson-Mammel, S. G. and Buchanan, R. L. (2004) Thermal inactivation of Enterobacter sakazakii in rehyrdated infant formula. J. Food Prot. 67, 60-63.
  9. Edelson-Mammel, S. G., Porteous, M. K., and Buchanan, R. L. (2005) Survival of Enterobacter sakazakii in dehydrated powdered infant formula. J. Food Prot. 68, 1900-1902.
  10. Farmer, J. J., Asbury, M. A., Hickman, F. W., and Brenner, D. J. (1980) The Enterobacteriaceae study group. Enterobacter sakazakii: A new species of "Enterobacteriaceae" isolated from clinical specimens. Int. J. Syst. Bacteriol. 30, 369-58. https://doi.org/10.1099/00207713-30-3-569
  11. Food and Agriculture Organization-World health Organization (FAO-WHO) (2006) Enterobacter sakazakii and Salmonella in powdered infant formula: Meeting report. In: Microbiological Risk Assessment Series 10, World Health organization-Food and Agriculture Organization of the United Nations, Geneva and Rome. WHO Press, Geneva, Switzerland.
  12. Girlich, D., Poirel, L., Leelaporn, A., Karim, A., Tribuddharat, C., Fennewald, M., and Nordmann, P. (2001) Molecular epidemiology of the integron-located VEB-1 extendedspectrum beat-lactamase in nosocomial enterobacterial isolates in Bangkok, Thailand. J. Clin .Microbiol. 39, 175-182. https://doi.org/10.1128/JCM.39.1.175-182.2001
  13. Guillaume-Gentil, O., Sonnard, V., Kandhai, M. C., Marugg, J. D., and Joosten, H. (2005) A Simple and rapid cultural method for detection of Enterobacter sakazakii in environmental samples. J. Food Prot. 68, 64-69.
  14. Gurtler, J. B. and Beuchat, L. R. (2007) Growth of Enterobacter sakazakii in reconstituted infant formula as affected by composition and temperature. J. Food Prot. 70, 2095- 2103.
  15. Iversen, C. and Forsythe, S. J. (2003) Risk profile of Enterobacter sakazakii, an emergent pathogen associated with infant milk formula. Food Sci. Technol. 14, 443-454. https://doi.org/10.1016/S0924-2244(03)00155-9
  16. Iversen, C., Lane, M., and Forsythe, S. J. (2004) The growth profile, thermotolerance and biofilm formation of Enterobacter sakazakii grown in infant formula milk. Lett. Appl. Microbiol. 38, 378-382. https://doi.org/10.1111/j.1472-765X.2004.01507.x
  17. Kim, H., Ryu, J. H., Beuchat, L. R. (2006) Attachment of and biofilm formation by Enterobacter sakazakii on stainless steel and enteral feeding tubes. Appl. Environ. Microbiol. 72, 5846-5856. https://doi.org/10.1128/AEM.00654-06
  18. Kim, H. I., Lee, K. H., Kwak, I. S., Eom, M. O., Jeon, D. H., Sung, J. H., Choi, J. M., Kand, H. S., Kim, Y. S., and Kang, K. J. (2005) The establishing test method of bactericidal activity and the evaluating of Korean disinfectants/sanitizer efficacy. Korean J. Food Sci. Technol. 37, 838-843.
  19. Kim, S. H and Park, J. H. (2007) Thermal resistance and inactivation of Enterobacter sakazakii Isolates during rehydration of powdered infant formula. J. Microbiol. Biotechnol. 17, 364-368.
  20. Jung, M. K. and Park, J. H. (2006) Prevalence and thermal stability of Enterobacter sakazakii from unprocessed readyto-eat agricultural products and powdered infant formulas. Food Sci. Biotechnol. 15, 152-157.
  21. Lai, K. K. (2001) Enterobacter sakazakii infections among neonates, infants, children, and adults. Medicine 80, 113-22. https://doi.org/10.1097/00005792-200103000-00004
  22. Lee, M. J., Kim, Y. S., Choi, Y. H., Park, H. K., Park, B. K., Lee, K. H., Kang, K. J., Jeon, D. H., Park, K. H., and Ha, S. D. (2005) Evaluation of efficacy of sanitizers and disinfectants marked in Korea. Korean J. Food Sci. Technol. 37, 671- 677.
  23. Lehner, A., Riedel, K., Eberl, L., Breeuwer, P., Diep, B., and Stephan, R. (2005) Biofilm formation, extracellular polysaccharide production, and cell-to-cell signaling in various Enterobacter sakazakii strains: Aspect promoting environmental persistance. J. Food Prot. 68, 2287-2294.
  24. Muytjens, H. L. and J. van der Ros-van de Repe. (1986) Comparative in vitro susceptibilities of eight Enterobacter species, with special reference to Enterobacetr sakazakii. Antimicrob. Agents Chemother. 29, 367-370. https://doi.org/10.1128/AAC.29.2.367
  25. Muytjens, H. L., Roelofs, W. H., and Jasper, G. H. J. (1988) Quality of powdered substitutes for breast milk with regard to members of the family Enterobacteraceae. J. Clin. Microbiol. 26, 743-746.
  26. O'Toole, G. A., Kaplan, H. B., and Kolter, R. (2000) Biofilm formation as microbial development. Annu. Rev. Microbiol. 54, 49-79. https://doi.org/10.1146/annurev.micro.54.1.49
  27. Paterson, D. L., Rossi, F., Baquero, F., Hsueh, P. R., Woods, G. L., Satishchandran, V., Snyder T. A., Harvey, C. M., Teppler, H., Dinubile, M. J., and Chow, J. W. (2005) In vitro susceptibilities of aerobic and facultative gram-negative bacilli isolated from patients with intra-abdominal infections worldwide: The 2003 study for monitering antimicrobial resistance trends (SMART). J. Antimicrob. Chemother. 55, 965- 973. https://doi.org/10.1093/jac/dki117
  28. Res, T. J. and Frank, J. F. (1993) Susceptibility of starved planktonic and biofilm Listeria monocytogenes to quaternary ammonium sanitizer as determined by direct viable and agar plate count. J. Food Prot. 56, 573-576.
  29. Rusell, A. D. and Day, M. J. (1996) Antibiotic and biocide resistance in bacteria. Microbios. 85, 45-65.
  30. Stock, I. and Wiedemann, B. (2002) Natural antibiotic susceptibility of Enterobacter amnigenus, Enterobacter cancerogenus, Enterobacter gergoviae and Enterobacter sakazakii strains. Clin. Microbiol. Infect. 8, 564-578. https://doi.org/10.1046/j.1469-0691.2002.00413.x
  31. Yoo, M. K., Kim, S. S., and Oh, S. S. (2005) Isolation and genotyping of Enterobacter sakazakii from powdered infant formula manufactured in Korea. Food Sci. Biotechnol. 14, 875-877.
  32. Zarazaga, M., Saenz, Y., Portillo, A., Tenorio, C., Ruiz-Larrea, F., Campo, R. D., Baquero, F., and Torres, C. (1999) In vitro activities of ketolide HMR 3647, mactolides, and other antibiotics against Lactobacillus, Leuconostoc, and Pediococcus isolates. Antimicro. Agent Chemo. 43, 3039-3041.
  33. Iversen, C., Mullane, N., McCardell, B., Tall, B. D., and Lehner, A. (2008) Cronobacter gen. nov., a new genus to accommodate the biogroups of Enterobacter sakazakii, and proposal of Cronobacter sakazakii gen. nov., comb. nov., Cronobacter malonaticus sp. nov., Cronobacter turicensis sp. nov., Cronobacter muytjensii sp. nov., Cronobacter dublinensis sp. nov., Cronobacter genomospecies 1, and of three subspecies, Cronobacter dublinensis subsp. dublinensis subsp. nov., Cronobacter dublinensis subsp. lausannensis subsp. nov. and Cronobacter dublinensis subsp. lactaridi subsp. nov. Int. J. Syst. Evol. Microbiol. 58, 1442-1447. https://doi.org/10.1099/ijs.0.65577-0
  34. Kim, H., Ryu, J. H., and Beuchat, L. R. (2007) Effectiveness of disinfectant in killing Enterobacter sakazakii in suspension, dried on the surface of stainless steel, and in a biofilm. Appl. Environ. Microbiol. 73, 1256-1265. https://doi.org/10.1128/AEM.01766-06
  35. Nazarowec-White, M. and Farber, J. M. (1997) Thermal resistance of Enterobacter sakazakii in rehydrated driedinfant formula. Lett. Appl. Microbiol. 24, 9-13. https://doi.org/10.1046/j.1472-765X.1997.00328.x
  36. Tamaru, Y., Takani, Y., Yoshida, T., and Sakamoto, T. (2005) Crucial role of extracellular polysaccharide in desiccation and freezing tolerance in the terrestrial cyanobacterium Nostoc commune. Appl. Environ. Microbiol. 71, 7327-7333. https://doi.org/10.1128/AEM.71.11.7327-7333.2005
  37. Lee, E., Ryu, T. H., and Park, J. H. (2009) Tolerance of Korean Cronobacter spp.(Enterobacter sakazakii) ioslates to dessication. Korean J. Food Sci. Technol. 41, 681-686.
  38. Pickett, E. and Murano, E. A. (1996) Sensitivity of Listeria monocytogenes to sanitizer after exposure to a chemical shock. J. Food Prot. 59, 374-378.

Cited by

  1. Current Cronobacter spp. Researches on Prevalence, Control, and Detection vol.48, pp.4, 2012, https://doi.org/10.7845/kjm.2012.051