DOI QR코드

DOI QR Code

Tracking Capability Analysis of ARGO-M Satellite Laser Ranging System for STSAT-2 and KOMPSAT-5

  • Lim, Hyung-Chul (Korea Astronomy and Space Science Institute) ;
  • Seo, Yoon-Kyung (Korea Astronomy and Space Science Institute) ;
  • Na, Ja-Kyung (Korea Astronomy and Space Science Institute) ;
  • Bang, Seong-Cheol (Korea Astronomy and Space Science Institute) ;
  • Lee, Jin-Young (Korea Astronomy and Space Science Institute) ;
  • Cho, Jung-Hyun (Korea Astronomy and Space Science Institute) ;
  • Park, Jang-Hyun (Korea Astronomy and Space Science Institute) ;
  • Park, Jong-Uk (Korea Astronomy and Space Science Institute)
  • Received : 2010.05.26
  • Accepted : 2010.08.20
  • Published : 2010.09.15

Abstract

Korea Astronomy and Space Science Institute (KASI) has developed a mobile satellite laser ranging (SLR) system called ARGO-M since 2008 for space geodesy research and precise orbit determination technologies using SLR with mm level accuracy. ARGO-M is capable of night tracking and daylight tracking for which requires spatial, spectral and time filters due to high background noises. In this study, characteristics and specifications of ARGO-M are discussed and its tracking capabilities of night and daylight tracking are analyzed for STSAT-2B and KOMPSAT-5 through link budget. Additionally false alarm and signal detection probabilities are also analyzed depending on spectral and time filters for daylight tracking for these satellites.

Keywords

ARGO-M;link budget;false alarm probability;signal detection probability

References

  1. Arnold, D. A. 2003, Cross Section of ILRS Satellites (ILRS technical report)
  2. Degnan, J. J. 1993, Contributions of Space Geodesy to Geodynamics: Technology, Geodynamics Series, 25, 133 https://doi.org/10.1029/GD025p0133
  3. Degnan, J. J. & Klein, B. J. 1974, ApOpt, 13, 2397
  4. Degnan, J. J. 1994, in Proceedings of the 9th International Workshop on Laser Ranging Instrumentation, ed. J. M. Luck (Canbera: Australian Government Publishing Service), p.8
  5. Lee, S. H. 2010, private communication
  6. Hall, F. F. Jr., Post, M. J., Richter, R. A., Lerfald, G. M., & Derr, R. E. 1983, Air Force Geophysics Laboratory Report (Cirrus Cloud Model, in Atmospheric Transmittance Radiance: Computer Code LOWTRAN), AFGL-TR-83-0187
  7. Neumann, G. A., Cavanaugh, J. F., Coyle, D. B., McGarry, J., Smith, D. E., Sun, X., Torrence, M., Zagwodski, T. W., & Zuber, M. T. 2006, in Proceedings of the 15th International Workshop on Laser Ranging, eds. J. M. Luck, C. Moore, & P. Wilson (Canbera: EOS Space Systems), p.451
  8. Pratt, W. K. 1967, Laser Communications Systems (New York: John Wiley and Sons), pp.121-135
  9. Ricklefs, R. L. 2006, Consolidated Laser Ranging Prediction Format Version 1.01 (ILRS technical report)
  10. Smith, D. E., Zuber, M. T., Sun, X., Neumann, G. A., Cavanaugh, J. F., McGarry, J. F., & Zagwodzki, T. W. 2006, Science, 311, 53, doi: 10.1126/science.1120091 https://doi.org/10.1126/science.1120091
  11. Yang, F., Xiao, C., Chen, W., Zhang, Z., Tan, D., Gong, X., Chen, J., Huang, L., & Zhang, J. 1999, Science in China, 42, 198 https://doi.org/10.1007/BF02876572
  12. Zuber, M. T., Smith, D. E., Zellar, R., Neumann, G. A., Sun, X., Connelly, J., Matuszeski, A., McGarry, J. F., Ott, M., Ramoslzquierdo, L., Rowlands, D. D., Torrence, M. H., & Zagwodzki, T. W. 2010, SSRv, 150, 63, doi: 10.1007/s11214-009-9511-z https://doi.org/10.1007/s11214-009-9511-z

Cited by

  1. A new approach to the telescope operation method for satellite tracking using a time synchronization technique vol.54, pp.8, 2014, https://doi.org/10.1016/j.asr.2014.06.013
  2. A study on tracking method and normal point formation algorithm of new mobile SLR system in Korea vol.39, pp.4, 2011, https://doi.org/10.5139/JKSAS.2011.39.4.370
  3. Development and Preliminary Performance Analysis of a fast and high precision Tracking Mount for 1m Satellite Laser Ranging vol.44, pp.11, 2016, https://doi.org/10.5139/JKSAS.2016.44.11.1006
  4. Design and Development of High-Repetition-Rate Satellite Laser Ranging System vol.32, pp.3, 2015, https://doi.org/10.5140/JASS.2015.32.3.209
  5. Study on the Optoelectronic Design for Korean Mobile Satellite Laser Ranging System vol.28, pp.2, 2011, https://doi.org/10.5140/JASS.2011.28.2.155
  6. Laser Tracking Analysis of Space Debris using SOLT System at Mt. Gamak vol.43, pp.9, 2015, https://doi.org/10.5139/JKSAS.2015.43.9.830
  7. Study on the Preliminary Design of ARGO-M Operation System vol.27, pp.4, 2010, https://doi.org/10.5140/JASS.2010.27.4.393
  8. Calculation of the light intensity distribution reflected by a spherical cube corner retroreflector array vol.117, pp.1, 2014, https://doi.org/10.1134/S0030400X1407025X
  9. Design of tracking mount and controller for mobile satellite laser ranging system vol.49, pp.1, 2012, https://doi.org/10.1016/j.asr.2011.09.009
  10. Development of Optical System for ARGO-M vol.30, pp.1, 2013, https://doi.org/10.5140/JASS.2013.30.1.049
  11. Orbit Determination Using SLR Data for STSAT-2C: Short-arc Analysis vol.32, pp.3, 2015, https://doi.org/10.5140/JASS.2015.32.3.189
  12. Performance Analysis of the First Korean Satellite Laser Ranging System vol.31, pp.3, 2014, https://doi.org/10.5140/JASS.2014.31.3.225