Trend Analysis of GPS Precipitable Water Vapor Above South Korea Over the Last 10 Years

  • Sohn, Dong-Hyo (Space Geodesy Research Group, Korea Astronomy and Space Science Institute) ;
  • Cho, Jung-Ho (Space Geodesy Research Group, Korea Astronomy and Space Science Institute)
  • Received : 2010.02.23
  • Accepted : 2010.06.15
  • Published : 2010.09.15


We analyzed global positioning system (GPS)-derived precipitable water vapor (PWV) trends of the Korea Astronomy and Space Science Institute 5 stations (Seoul, Daejeon, Mokpo, Milyang, Sokcho) where Korea Meteorological Administration meteorological data can be obtained at the same place. In the least squares analysis, the GPS PWV time series showed consistent positive trends (0.11 mm/year) over South Korea from 2000 to 2009. The annual increase of GPS PWV was comparable with the 0.17 mm/year and 0.02 mm/year from the National Center for Atmospheric Research Earth Observing Laboratory and Atmospheric InfraRed Sounder, respectively. For seasonal analysis, the increasing tendency was found by 0.05 mm/year, 0.16 mm/year, 0.04 mm/year in spring (March-May), summer (June-August) and winter (December-February), respectively. However, a negative trend (-0.14 mm/year) was seen in autumn (September-November). We examined the relationship between GPS PWV and temperature which is the one of the climatic elements. Two elements trends increased during the same period and the correlation coefficient was about 0.8. Also, we found the temperature rise has increased more GPS PWV and observed a stronger positive trend in summer than in winter. This is characterized by hot humid summer and cold dry winter of Korea climate and depending on the amount of water vapor the air contains at a certain temperature. In addition, it is assumed that GPS PWV positive trend is caused by increasing amount of saturated water vapor due to temperature rise in the Korean Peninsula. In the future, we plan to verify GPS PWV effectiveness as a tool to monitor changes in precipitable water through cause analysis of seasonal trends and indepth/long-term comparative analysis between GPS PWV and other climatic elements.


global positioning system;precipitable water vapor;Atmospheric InfraRed Sounder;temperature


  1. Baek, J. H., Lee, J. W., Choi, B. K., & Cho, J. H. 2007, JASS, 24, 275
  2. Bevis, M., Businger, S., Herring, T. A., Rocken, C., Anthes, R. A., & Ware, R. H. 1992, JGR, 97, 15787
  3. Dach, R., Hugentobler, U., Fridez, P., & Meindl, M. 2007, Bernese GPS Software Version 5.0 (Bern: Printing Office of the University of Bern), pp.1-612
  4. Elgered, G., Davis, J. L., Herring, T. A., & Shapiro, I. I. 1991, JGR, 96, 6541
  5. Gutman, S. I. & Benjamin, S. G. 2001, GPS Solutions, 4, 16, doi: 10.1007/PL00012860
  6. Ha, J. H., Kim, D. S., Park, K. D., & Won, J. H. 2009, JASS, 26, 547
  7. Ha, J. H., Park, K. D., & Heo, B. H. 2006, JASS, 23, 373
  8. Jin, S., Park, J. U., Cho, J. H., & Park, P. H. 2007, JGRD, 112, D09110, doi: 10.1029/2006JD007772
  9. Jones, J. 2008, EUMETNET GPS Water Vapour Programme (E-GVAP) Workshop (Copenhagen: Denmark Meteorological Institute)
  10. Korea Meteorological Administration (KMA). 2007, Weather Almanac (Seoul: KMA), pp.99-101
  11. Korea Meteorological Administration (KMA). 2009, Weather Almanac (Seoul: KMA), pp.92-93
  12. Lee, J. W., Cho, J. H., Baek, J. H., & Park, J. U. 2007, JASS, 24, 285
  13. Lee, J. W., Cho, J. H., Baek, J. H., Park, J. U., & Park, C. 2008, Atmosphere, 18, 417
  14. Moon, Y. J., Choi, K. H., & Park, P. H. 1999, JASS, 16, 61
  15. National Institute of Meteorological Research (NIMR). 2009, Understanding Climate Change II (Seoul: NIMR)
  16. Nilsson, T. & Elgered, G. 2008, JGRD, 113, D19101, doi: 10.1029/2008JD010110
  17. Ninomiya, K. 2003, Dynamic Meteorology Essence (Seoul: Sigma Press), pp.130-132
  18. Prasad, A. K. & Singh, R. P. 2009, JGRD, 114, D05107, doi: 10.1029/2008JD011230
  19. Raja, M. K. R. V., Gutman, S. I., Yoe, J. G., McMillin, L. M., & Zhao, J. 2008, JAtOT, 25, 416, doi: 10.1175/2007JTECHA889.1
  20. Song, D., Yun, H., & Suh, A. 2003, Korean J. Geomatics, 21, 9
  21. Turner, D. D., Lesht, B. M., Clought, S. A., Liljegren, J., C., Revercomb, H. E., & Tobin, D. C. 2003, JAtOT, 20, 117, doi:10.1175/1520-0426(2003)020<0117:DBAVIV>2.0.CO;2<0117:DBAVIV>2.0.CO;2
  22. Wang, J., Cole, H. L., Carlson, D. J., Miller, E. R., Beierle, K., Paukkunen, A., & Laine, T. K. 2002, JAtOT, 19, 981, doi: 10.1175/1520-0426(2002)019<0981:COHMEF>2.0.CO;2<0981:COHMEF>2.0.CO;2
  23. Wang, J. & Zhang, L. 2008, JCli, 21, 2218, doi: 10.1175/2007JCLI1944.1
  24. Wang, J. & Zhang, L. 2009, J Geod, 83, 209, doi: 10.1007/s00190-008-0238-5

Cited by

  1. Trends in the Atmospheric Water Vapor Content From Ground-Based GPS: The Impact of the Elevation Cutoff Angle vol.5, pp.3, 2012,
  2. A Study on GNSS Data Pre-processing for Analyzing Geodetic Effects on Crustal Deformation due to the Earthquake vol.23, pp.1, 2015,
  3. Water vapor-weighted mean temperature and its impact on the determination of precipitable water vapor and its linear trend vol.121, pp.2, 2016,
  4. 14 years of GPS tropospheric delays in the French–Italian border region: comparisons and first application in a case study vol.8, pp.1, 2016,
  5. Validation of the Atmospheric Infrared Sounder Water Vapor Retrievals Using Global Positioning System: Case Study in South Korea vol.28, pp.4, 2011,
  6. Review of the state of the art and future prospects of the ground-based GNSS meteorology in Europe vol.9, pp.11, 2016,
  7. EPN-Repro2: A reference GNSS tropospheric data set over Europe vol.10, pp.5, 2017,