Contributions of Heating and Forcing to the High-Latitude Lower Thermosphere: Dependence on the Interplanetary Magnetic Field

  • Kwak, Young-Sil (Solar and Space Weather Research Group, Korea Astronomy and Space Science Institute) ;
  • Richmond, Arthur (High Altitude Observatory, National Center for Atmospheric Research) ;
  • Ahn, Byung-Ho (Department of Earth Science, Kyungpook National University) ;
  • Cho, Kyung-Suk (Solar and Space Weather Research Group, Korea Astronomy and Space Science Institute)
  • Received : 2010.07.28
  • Accepted : 2010.08.26
  • Published : 2010.09.15


To better understand the physical processes that maintain the high-latitude lower thermospheric dynamics, we have identified relative contributions of the momentum forcing and the heating to the high-latitude lower thermospheric winds depending on the interplanetary magnetic field (IMF) and altitude. For this study, we performed a term analysis of the potential vorticity equation for the high-latitude neutral wind field in the lower thermosphere during the southern summertime for different IMF conditions, with the aid of the National Center for Atmospheric Research Thermosphere-Ionosphere Electrodynamics General Circulation Model (NCAR-TIEGCM). Difference potential vorticity forcing and heating terms, obtained by subtracting values with zero IMF from those with non-zero IMF, are influenced by the IMF conditions. The difference forcing is more significant for strong IMF $B_y$ condition than for strong IMF $B_z$ condition. For negative or positive $B_y$ conditions, the difference forcings in the polar cap are larger by a factor of about 2 than those in the auroral region. The difference heating is the most significant for negative IMF $B_z$ condition, and the difference heatings in the auroral region are larger by a factor of about 1.5 than those in the polar cap region. The magnitudes of the difference forcing and heating decrease rapidly with descending altitudes. It is confirmed that the contribution of the forcing to the high-latitude lower thermospheric dynamics is stronger than the contribution of the heating to it. Especially, it is obvious that the contribution of the forcing to the dynamics is much larger in the polar cap region than in the auroral region and at higher altitude than at lower altitude. It is evident that when $B_z$ is negative condition the contribution of the forcing is the lowest and the contribution of the heating is the highest among the different IMF conditions.


high-latitude lower thermosphere;Interplanetary magnetic field;forcing;heating


  1. Foster, J. C., Holt, J. M., Musgrove, R. G., & Evans, D. S. 1986, in Solar Wind-Magnetosphere Coupling, eds. Y. Kamide & J. A. Slavin (Tokyo: Terra Scientific Publishing Company), p. 477
  2. Hagan, M. E. & Forbes, J. M. 2002, JGRD, 107, 4754, doi: 10.1029/2001JD001236
  3. Heppner, J. P. 1972, JGR, 77, 4877, doi: 10.1029/JA077i025p04877
  4. Heppner, J. P. & Maynard, N. C. 1987, JGR, 92, 4467, doi: 10.1029/JA092iA05p04467
  5. Hernandez, G., McCormac, F. G., & Smith, R. W. 1991, JGR, 96, 5777, doi: 10.1029/90JA02458
  6. Killeen, T. L., Hays, P. B., Heelis, R. A., Hanson, W. B., & Spencer, N. W. 1985, GeoRL, 12, 159, doi: 10.1029/GL012i004p00159
  7. Killeen, T. L., Won, Y. I., Niciejewski, R. J., & Burns, A. G. 1995, JGRA, 100, 21327, doi: 10.1029/95JA01208
  8. Kwak, Y. S., Ahn, B. H., & Kim, K. H. 2008a, JASS, 25, 415
  9. Kwak, Y. S., Lee, J. J., Ahn, B. H., Hwang, J., Kim, K. H., & Cho, K. S. 2008b, JASS, 25, 405
  10. Kwak, Y. S. & Richmond, A. D. 2007, JGR, 112, A01306, doi: 10.1029/2006JA011910
  11. Kwak, Y. S., Richmond, A. D., & Roble, R. G. 2007, JGR, 112, A06316, doi: 10.1029/2006JA012208
  12. Maeda, S., Fuller-Rowell, T. J., & Evans, D. S. 1989, JGRA, 94, 16869, doi: 10.1029/JA094iA12p16869
  13. McCormac, F. G. & Smith, R. W. 1984, GeoRL, 11, 935, doi: 10.1029/GL011i009p00935
  14. McCormac, F. G., Killeen, T. L., Gombosi, E., Hays, P. B., & Spencer, N. W. 1985, GeoRL, 12, 155, doi: 10.1029/GL012i004p00155
  15. McCormac, F. G., Killeen, T. L., & Thayer, J. P. 1991, JGR, 96, 115, doi: 10.1029/90JA01996
  16. McHarg, M., Chun, F., Knipp, D., Lu, G., Emery, B. A., & Ridley, A. 2005, JGR, 110, A08309, doi: 10.1029/2004JA010949
  17. Meriwether, J. W. & Shih, P. 1987, AnGeo, 5A, 329
  18. Niciejewski, R. J., Killeen, T. L., Johnson, R. M., & Thayer, J. P., 1992, AdSpR, 12, 215, doi: 10.1016/0273-1177(92)90058-6
  19. Niciejewski, R. J., Killeen, T. L., & Won, Y. 1994, JATP, 56, 285
  20. Pedlosky, J. 1979, in Geophysical Fluid Dynamics, ed. J. Pedlosky (New York: Springer-Verlag), p.624
  21. Rees, D. & Fuller-Rowell, T. J. 1989, RSPTA, 328, 139
  22. Rees, D. & Fuller-Rowell, T. J. 1990, AdSpR, 10, 197, doi: 10.1016/0273-1177(90)90254-W
  23. Richmond, A. D., Lathuillere, C., & Vennerstroem, S. 2003, JGRA, 108, 1066, doi: 10.1029/2002JA009493
  24. Richmond, A. D., Ridley, E. C., & Roble, R. G. 1992, GeoRL, 19, 601, doi: 10.1029/92GL00401
  25. Ruohoniemi, J. M. & Greenwald, R. A. 1996, JGRA, 101, 21743, doi: 10.1029/96JA01584
  26. Sica, R. J., Hernandez, G., Emery, B. A., Roble, R. G., Smith, R. W., & Rees, M. H., 1989, JGRA, 94, 11921, doi: 10.1029/JA094iA09p11921
  27. Thayer, J. P., Killeen, T. L., McCormac, F. G., Tschan, C. R., Ponthieu, J. J., & Spencer, N. W. 1987, AnGeo, 5A, 363
  28. Weimer, D. R. 1995, JGRA, 100, 19595, doi: 10.1029/95JA01755
  29. Weimer, D. R. 2001, JGRA, 106, 407, doi: 10.1029/2000JA000604
  30. Won, Y. 1994, PhD Thesis, University of Michigan
  31. Zhang, X. X., Wang, C., Chen, Y., Wang, Y. L., Tan, A., Wu, T. S., Germany, G. A., & Wang, W. 2005, JGR, 110, A12208, doi: 10.1029/2005JA011222