DOI QR코드

DOI QR Code

An Earth-Moon Transfer Trajectory Design and Analysis Considering Spacecraft's Visibility from Daejeon Ground Station at TLI and LOI Maneuvers

  • Woo, Jin (Astrodynamics and Control Laboratory, Department of Astronomy, Yonsei University) ;
  • Song, Young-Joo (Astrodynamics and Control Laboratory, Department of Astronomy, Yonsei University) ;
  • Park, Sang-Young (Astrodynamics and Control Laboratory, Department of Astronomy, Yonsei University) ;
  • Kim, Hae-Dong (Korea Aerospace Research Institute) ;
  • Sim, Eun-Sup (Korea Aerospace Research Institute)
  • Received : 2010.02.08
  • Accepted : 2010.08.23
  • Published : 2010.09.15

Abstract

The optimal Earth-Moon transfer trajectory considering spacecraft's visibility from the Daejeon ground station visibility at both the trans lunar injection (TLI) and lunar orbit insertion (LOI) maneuvers is designed. Both the TLI and LOI maneuvers are assumed to be impulsive thrust. As the successful execution of the TLI and LOI maneuvers are crucial factors among the various lunar mission parameters, it is necessary to design an optimal lunar transfer trajectory which guarantees the visibility from a specified ground station while executing these maneuvers. The optimal Earth-Moon transfer trajectory is simulated by modifying the Korean Lunar Mission Design Software using Impulsive high Thrust Engine (KLMDS-ITE) which is developed in previous studies. Four different mission scenarios are established and simulated to analyze the effects of the spacecraft's visibility considerations at the TLI and LOI maneuvers. As a result, it is found that the optimal Earth-Moon transfer trajectory, guaranteeing the spacecraft's visibility from Daejeon ground station at both the TLI and LOI maneuvers, can be designed with slight changes in total amount of delta-Vs. About 1% difference is observed with the optimal trajectory when none of the visibility condition is guaranteed, and about 0.04% with the visibility condition is only guaranteed at the time of TLI maneuver. The spacecraft's mass which can delivered to the Moon, when both visibility conditions are secured is shown to be about 534 kg with assumptions of KSLV-2's on-orbit mass about 2.6 tons. To minimize total mission delta-Vs, it is strongly recommended that visibility conditions at both the TLI and LOI maneuvers should be simultaneously implemented to the trajectory optimization algorithm.

Keywords

lunar mission;optimal trajectory design;trans lunar injection;lunar orbit insertion;visibility analysis

References

  1. Chin, G., Brylow, S., Foote, M., Garvin, J., Kasper, J., Keller, J., Litvak, M., Mitrofanov, I., Paige, D., Raney, K., Robinson, M., Sanin, A., Smith, D., Spence, H., Spudis, P., Stern, S. A., & Zuber, M. 2007, SSRv, 129, 391, doi: 10.1007/s11214-007-9153-y https://doi.org/10.1007/s11214-007-9153-y
  2. Foing, B. H., Racca, G. D., Marini, A., Evrard, E., Stagnaro, L., Almeida, M., Koschny, D., Frew, D., Zender, J., Heather, J., Grande, M., Huovelin, J., Keller, H. U., Nathues, A., Josset, J. L., Malkki, A., Schmidt, W., Noci, G., Birkl, R., Iess, L., Sodnik, Z., & McManamon, P. 2006, AdSpR, 37, 6, doi: 10.1016/j.asr.2005.12.016 https://doi.org/10.1016/j.asr.2005.12.016
  3. Gill, P. E., Murray, W., & Saunders, A. 2002, User's Guide for SNOPT Version 6, A Fortran Package for Large-Scale Nonlinear Programming (California: Stanford University), pp.3-105
  4. Goswamia, J. N. & Annaduraib, M. 2008, AcAau, 63, 1215, doi: 10.1016/j.actaastro.2008.05.013 https://doi.org/10.1016/j.actaastro.2008.05.013
  5. Kato, M., Sasaki, S., Tanaka, K., Iijima, Y., & Takizawa, Y. 2008, AdSpR, 42, 294, doi: 10.1016/j.asr.2007.03.049 https://doi.org/10.1016/j.asr.2007.03.049
  6. Kemble, S. 2002, Inteplanetary Mission Design Handbook (Chichester: Springer), pp.28-35, 43-49
  7. Kizner, W. 1961, P&SS, 7, 125, doi: 10.1016/0032-0633(61)90293-8 https://doi.org/10.1016/0032-0633(61)90293-8
  8. Lozier, D., Galal, K., Folta, D., & Beckman, M. 1998, AAS 98-323
  9. Sergeyevsky, A. B., Snyder, G. C., & Cunniff, R. A. 1983, Interplanetary Mission Design Handbook Volume 1, Part 2 (Los Angeles, CA: JPL), pp.18-31
  10. Song, E. J., Park, C. S., Cho, S. B., Roh, W. R., Ju, G. H., Choi, N. M., & Lee, S. Y. 2008a, KSAS08-2906
  11. Song, Y. J., Park, E. S., Yoo, S. M., Park, S. Y., Choi, K. H., Yoon, J. C., Yim, J. R., Choi, J. M., & Kim, B. K. 2005, JASS, 22, 451
  12. Song, Y. J., Park, S. Y., Choi, K. H., & Sim, E. S. 2008b, J. KSAS, 36, 357
  13. Song, Y. J., Woo, J., Park, S. Y., Choi, K. H., & Sim, E. S. 2009, JASS, 26, 171
  14. Tanaka, S., Shiraishi, H., Kato, M., & Okada, T. 2008, AdSpR, 42, 394, doi: 10.1016/j.asr.2007.07.002 https://doi.org/10.1016/j.asr.2007.07.002
  15. Zheng, Y., Ouyang, Z., Li, C., Liu, J., & Zou, Y. 2008, P&SS, 56, 881, doi: 10.1016/j.pss.2008.01.002 https://doi.org/10.1016/j.pss.2008.01.002

Cited by

  1. Analysis of Delta-V Losses During Lunar Capture Sequence Using Finite Thrust vol.28, pp.3, 2011, https://doi.org/10.5140/JASS.2011.28.3.203
  2. Evaluating High-Degree-and-Order Gravitational Harmonics and its Application to the State Predictions of a Lunar Orbiting Satellite vol.32, pp.3, 2015, https://doi.org/10.5140/JASS.2015.32.3.247
  3. Uncertainty Requirement Analysis for the Orbit, Attitude, and Burn Performance of the 1stLunar Orbit Insertion Maneuver vol.33, pp.4, 2016, https://doi.org/10.5140/JASS.2016.33.4.323
  4. Ground Contact Analysis for Korea's Fictitious Lunar Orbiter Mission vol.30, pp.4, 2013, https://doi.org/10.5140/JASS.2013.30.4.255
  5. Analysis on Tracking Schedule and Measurements Characteristics for the Spacecraft on the Phase of Lunar Transfer and Capture vol.31, pp.1, 2014, https://doi.org/10.5140/JASS.2014.31.1.51
  6. Lunar CubeSat Impact Trajectory Characteristics as a Function of Its Release Conditions vol.2015, 2015, https://doi.org/10.1155/2015/681901
  7. Preliminary Analysis of Delta-V Requirements for a Lunar CubeSat Impactor with Deployment Altitude Variations vol.32, pp.3, 2015, https://doi.org/10.5140/JASS.2015.32.3.257