DOI QR코드

DOI QR Code

Response of the Poleward Boundary of the Nightside Auroral Oval to Impacts of Solar Wind Dynamic Pressure Enhancement

  • Cho, Joon-Sik (Department of Astronomy and Space Science, Chungbuk National University) ;
  • Lee, Dae-Young (Department of Astronomy and Space Science, Chungbuk National University) ;
  • Kim, Kyung-Chan (Department of Astronomy and Space Science, Chungbuk National University) ;
  • Lee, Ji-Hee (Department of Astronomy and Space Science, Chungbuk National University)
  • Received : 2010.05.28
  • Accepted : 2010.07.20
  • Published : 2010.09.15

Abstract

In this paper we have investigated latitudinal variations of the poleward boundary of the nightside auroral oval when the magnetosphere is hit by an enhanced solar wind dynamic pressure front. We used precipitating particle data obtained from Defense Meteorological Satellite Program satellites to identify the locations of the boundary before and after enhanced pressure impacts. The boundary locations are represented by a parameter called "b5e". After performing the analysis for a number of events, we found that the basic effect of the solar wind pressure increase impact is often (but not always) to move the poleward boundary of the nightside auroral oval poleward. However, this effect can be often modified by other factors, such as simultaneous variations of the interplanetary magnetic field with a pressure increase, and thus the boundary response is not necessarily a poleward shift in many cases. We demonstrate this with specific examples, and discuss other possible complicating factors.

Keywords

solar wind pressure;polar cap boundary;auroral oval;defense meteorological satellite program

References

  1. Boudouridis, A., Zesta, E., Lyons, R., Anderson, P. C., & Lummerzheim, D. 2003, JGR, 108, 8012, doi: 10.1029/2002JA009373 https://doi.org/10.1029/2002JA009373
  2. Kamide, Y., Kokubun, S., Bargatze, L. F., & Frank, L. 1999, PCEC, 24, 119, doi: 10.1016/S1464-1917(98)00018-X https://doi.org/10.1016/S1464-1917(98)00018-X
  3. Lee, D. Y., Lyons, L. R., Weygand, J. M., & Wang, C. P. 2007, JGR, 112, A06240, doi: 10.1029/2007JA012249 https://doi.org/10.1029/2007JA012249
  4. Lee, D. Y., Ohtani, S., & Lee, J. H. 2010, JGR, 115, A08204, doi: 10.1029/2009JA014906 https://doi.org/10.1029/2009JA014906
  5. Meng, C. I., Akasofu, S. I., & Makita, K. 1983, JGR, 88, 7967, doi:10.1029/JA088iA10p07967 https://doi.org/10.1029/JA088iA10p07967
  6. Meng, C. I. & Makita, K. 1986, in Solar Wind-Magnetospheric Coupling, eds. Y. Kamide & A. Slavin (Tokyo: Terra Sci.), pp.605-631
  7. Newell, P. T., Feldstein, Y. I., Galperin, Y. I., & Meng, C. I. 1996, JGR, 101, 10737, doi: 10.1029/95JA03516 https://doi.org/10.1029/95JA03516
  8. Weimer, D. R. 2004, JGR, 109, A12104, doi: 10.1029/2004JA010691 https://doi.org/10.1029/2004JA010691
  9. Weimer, D. R., Ober, D. M., Maynard, N. C., Collier, M. R., McComas, D. J., Ness, N. F., Smith, C. W., & Watermann, J. 2003, JGR, 108, 1026, doi: 10.1029/2002JA009405 https://doi.org/10.1029/2002JA009405

Cited by

  1. Variation and modeling of ultraviolet auroral oval boundaries associated with interplanetary and geomagnetic parameters vol.15, pp.4, 2017, https://doi.org/10.1002/2016SW001530