Biomarkers and Surrogate Endpoints for Development of New Drug on Pulmonary Disease

폐질환 치료제의 효율적인 신약개발을 위한 생체표지자 및 대리결과 변수

  • Received : 2009.12.24
  • Accepted : 2009.12.27
  • Published : 2010.04.30

Abstract

Biomarkers are likely to be important in the study of various pulmonary diseases for many reasons. Research efforts in developing biomarkers and surrogate endpoints of lung diseases have resulted in the identification of new risk factors and novel drug targets, as well as the establishment of treatment guidelines. Government agencies, academic research institutions, diagnostic industries, and pharmaceutical companies all recognize the importance of biomarkers in new drug development and advancing therapies to improve public health. In drug development, biomarkers are used to evaluate early signals of efficacy and safety, to select dose, and to identify the target population. Identification of suitable end points not only would help investigators design appropriate clinical trials but would assist clinicians in caring for this patient population. Though the area of pulmonology has received much attention in the past decades, it still lags behind with regard to the development of biomarkers, particularly those of health effects and susceptibility. This review critically summarized several biomarker researches such as Evaluation of COPD Longitudinally to Identify Predictive Surrogate End-points (ECLIPSE) study with objectives of identifying the parameters that predict disease progression of COPD, as well as biomarkers that may serve as surrogate end-points.

References

  1. Woosley, R. L. and Cossman, J. : Drug development and the FDA's critical path initiative. Clin. Pharmacol. Ther. 81(1), 129 (2007). https://doi.org/10.1038/sj.clpt.6100014
  2. Revision of Committee : Challenge and Opportunity on the critical path to new medical product. FDA (2004).
  3. Biomarkers Definition Working Group (BDWG) : Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework. Clin. Pharmacol. Ther. 69(3), 89 (2001). https://doi.org/10.1067/mcp.2001.113989
  4. 이철주 : 바이오마커 연구개발 동향 한국생화학분자생물학회 (KSBMB) Webzine 2008년 5월호 http://www.biochem.or.kr/sub/popup_letter.php?CatNo=642.
  5. Twaddell, S. : Surrogate outcome markers in research and clinical practice. Aust. Prescr. 32, 47 (2009) https://doi.org/10.18773/austprescr.2009.023
  6. Vestbo, J., Anderson, W., Coxson, H. O., Crim, C., Dawber, F., Edwards, L., Hagan, G., Knobil, K., Lomas, D. A., MacNee, W., Silverman, E. K. and Tal-Singer, R. : Evaluation of COPD longitudinally to identify predictive surrogate end-points (ECLIPSE). Eur. Respir. J. 31, 869 (2008) https://doi.org/10.1183/09031936.00111707
  7. Revision of Committee: Critical path opportunities reports. FDA (2006): Online service.
  8. Stanski, D. R. : Model-based drug development: A critical path opportunity. FDA (2006).
  9. Revision Committee: Post-genomic biomarker. Bioview 12(3),(2004).
  10. 성수현, 윤휘열, 백인환, 강원구, 장정윤, 서경원, 권광일 : 당뇨 병 및 골다공증 치료제의 효율적인 신약개발을 위한 생체표지자 및 대리 결과 변수의 역할 및 활용. 약학회지 52(5), 314 (2008).
  11. Colburn, W. A. : Biomarkers in drug discovery and development: From target identification through drug marketing. J. Clin. Pharmacol. 43, 329 (2003). https://doi.org/10.1177/0091270003252480
  12. Lee, J. W., Devanarayan, V., Barrett, Y. C., Weiner, R., Allinson, J., Fountain, S., Keller, S., Weinryb, I., Green, M., Duan, L., Rogers, J. A., Millham, R., O'Brien, P. J., Sailstad, J., Khan, M., Ray, C. and Wagner, J. A. : Fit-for-purpose method development and validation for successful biomarker measurement. Pharm. Res. 23(2), 312 (2006). https://doi.org/10.1007/s11095-005-9045-3
  13. Lee, J. W., Smith, W. C., Nordblom, G. D. and Bowsher, R. R. : Validation of assays for the bioanalysis of novel biomarkers: Practical recommendations for clinical investigation of new drug entities. Biomarkers in Clinical Drug Development 132, 119 (2003).
  14. Colburn, W. A. : Optimizing the use of biomarkers, surrogate endpoints, and clinical endpoints for more efficient drug development. J. Clin. Pharmacol. 40, 1419 (2000).
  15. Lesko, L. J. and Atkinson, A. J. : Use of biomarkers and surrogate endpoints in drug development and regulatory decision making: criteria, validation, strategies. Annu. Rev. Pharmacol. 41, 347 (2001). https://doi.org/10.1146/annurev.pharmtox.41.1.347
  16. Wagner, J. A. : Biomarker validation and qualification: Fitness for use. Biomarker World Congress (2007).
  17. Rolan, P., Atkinson, A. J. and Lesko, L. J. : Use of biomarkers from drug discovery through clinical practice: Report of the ninth European federation of pharmaceutical sciences conference on optimizing drug development. Clin. Pharmacol. Ther. 73(4), 284 (2003). https://doi.org/10.1016/S0009-9236(02)17625-9
  18. Danhof, M., Alvan, G., Dahl, S. G., Kuhlmann, J. and Paintaud, G. : Mechanism-based pharmacokinetic-pharmacodynamic modeling-a new classification of biomarkers. Pharm. Res. 22(9), 1432 (2005). https://doi.org/10.1007/s11095-005-5882-3
  19. Rolan, P. : The contribution of clinical pharmacology surrogates and models to drug development-a critical appraisal. Brit. J. Clin. Pharmacol. 44, 219 (1997).
  20. Cazzola, M., MacNee, W., Martinez, F. J., Rabe, K. F., Franciosi, L. G., Barnes, P. J., Brusasco, V., Burge, P. S., Calverley, P. M. A., Celli, B. R., Jones, P. W., Mahler, D. A., Make, B., Miravitlles, M., Page, C. P., Palange, P., Parr, D., Pistolesi, M., Rennard, S. I., Rutten-van Moelken, M. P., Stockley, R., Sullivan, S. D., Wedzicha, J. A. and Wouters, E. F. on behalf of the American Thoracic Society/European Respiratory Society Task Force on outcomes of COPD : Outcomes for COPD pharmacological trials: from lung function to biomarkers. Eur. Respir. J. 31, 416 (2008). https://doi.org/10.1183/09031936.00099306
  21. Saetta, M., Turato, G., Maestrelli, P., Mapp, C. E. and Fabbri, L. M. : Cellular and structural bases of chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care. Med. 163, 1304 (2001). https://doi.org/10.1164/ajrccm.163.6.2009116
  22. Snell, N. and Newbold, P. : The clinical utility of biomarkers in asthma and COPD. Curr. Opin. Pharmacol. 8, 222 (2008). https://doi.org/10.1016/j.coph.2008.04.001
  23. O'Shaughnessy, T. C., Ansari, T. W., Barnes, N. C. and Jeffery, P. K. : Inflammation in bronchial biopsies of subjects with chronic bronchitis: inverse relationship of CD8+ T lymphocytes with FEV1. Am. J. Respir. Crit. Care. Med. 155, 852 (1997). https://doi.org/10.1164/ajrccm.155.3.9117016
  24. Saetta, M., Di Stefano, A., Maestrelli, P., Ferraresso, A., Drigo, R., Potena, A., Ciaccia, A. and Fabbri, L. M. : Activated Tlymphocytes and macrophages in bronchial mucosa of subjects with chronic bronchitis. Am. Rev. Respir. Dis. 147, 301 (1993). https://doi.org/10.1164/ajrccm/147.2.301
  25. Panzner, P., Lafitte, J. J., Tsicopoulos, A., Hamid, Q. and Tulic, M. K. : Marked up-regulation of T lymphocytes and expression of interleukin-9 in bronchial biopsies from patients with chronic bronchitis with obstruction. Chest 124, 1909 (2003). https://doi.org/10.1378/chest.124.5.1909
  26. Grumelli, S., Corry, D. B., Song, L. Z., Song, L., Green, L., Huh, J., Hacken, J., Espada, R., Bag, R., Lewis, D. E. and Kheradmand, F. : An immune basis for lung parenchymal destruction in chronic obstructive pulmonary disease and emphysema. PLoS Med. 1, e8 (2004). https://doi.org/10.1371/journal.pmed.0010008
  27. Saetta, M., Mariani, M., Panina-Bordignon, P., Turato, G., Buonsanti, C., Baraldo, S., Bellettato, C. M., Papi, A., Corbetta, L., Zuin, R., Sinigaglia, F. and Fabbri, L. M. : Increased expression of the chemokine receptor CXCR3 and its ligand CXCL10 in peripheral airways of smokers with chronic onstructive pulmonary disease. Am. J. Respir. Crit. Care. Med. 165, 1404 (2002). https://doi.org/10.1164/rccm.2107139
  28. Culpitt, S. V., Rogers, D. F., Shah, P., De Matos, C., Russell, R. E. K., Donnelly, L. E. and Barnes, P. J. : Impaired inhibition by dexamethasone of cytokine release by alveolar macrophages from patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care. Med. 167, 24 (2003). https://doi.org/10.1164/rccm.200204-298OC
  29. Russell, R. E., Culpitt, S. V., De Matos, C., Donnelly, L., Smith, M., Wiggins, J. and Barnes, P. J. : Release and activity of matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase- 1 by alveolar macrophages from patients with chronic obstructive pulmonary disease. Am. J. Respir. Cell. Mol. Biol. 26, 602 (2002). https://doi.org/10.1165/ajrcmb.26.5.4685
  30. Kalenderian, R., Raju, L., Roth, W., Schwartz, L. B., Gruber, B. and Janoff, A. : Elevated histamine and tryptase levels in smokers' bronchoalveolar lavage fluid. Do lung mast cells contribute to smokers' emphysema? Chest 94, 119 (1988). https://doi.org/10.1378/chest.94.1.119
  31. Pesci, A., Balbi, B., Majori, M., Cacciani, G., Bertacco, S., Alciato, P. and Donner, C. F. : Inflammatory cells and mediators in bronchial lavage of patients with chronic obstructive pulmonary disease. Eur. Respir. J. 12, 380 (1998). https://doi.org/10.1183/09031936.98.12020380
  32. Brightling, C. E., Monteiro, W., Ward, R., Parker, D., Monrgan, M., Wardlaw, A. J. and Pavord, I. D. : Sputum eosinophilia and short-term response to proednisolone in chronic obstructive pulmonary disease: a randomised controlled trial. Lancet, 356, 1480 (2000). https://doi.org/10.1016/S0140-6736(00)02872-5
  33. Brightling, C. E., McKenna, S., Hargadon, B., Birring, S., Green, R., Siva, R., Berry, M., Parker, D., Monteiro, W., Pavord, I. D. and Bradding, P. : Sputum eosinophilia and the short term response to inhaled mometasone in chronic obstructive pulmonary disease. Thorax 60, 193 (2005). https://doi.org/10.1136/thx.2004.032516
  34. Tzanakis, N., Chrysofakis, G., Tsoumakidou, M., Kyriakou, D., Tsiligianni, J., Bouros, D. and Siafakas, N. M. : Induced sputum CD8+ T-lymphocyte subpopulations in chronic obstructive pulmonary disease. Respir. Med. 98, 57 (2004). https://doi.org/10.1016/j.rmed.2003.08.007
  35. Aaron, S. E., Angel, J. B., Lunau, M., Wright, K., Fex, C., Le Saux, N. and Dales, R. E. : Granulocyte inflammatory markers and airway infection during acute exacerbation of chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care. Med. 163, 349 (2001). https://doi.org/10.1164/ajrccm.163.2.2003122
  36. Yamamoto, C., Yoneda, T., Yoshikawa, M., Fu, A., Tokuyama, T., Tsukaguchik, K. and Narita, N. : Airway inflammation in COPD assessed by sputum levels of interleukin-8. Chest 112, 505 (1997). https://doi.org/10.1378/chest.112.2.505
  37. Keatings, V. M., Collins, P. D., Scott, D. M. and Barnes, P. J. : Differences in interleukin-8 and tumor necrosis factor-alpha in induced sputum from patients with chronic obstructive pulmonary disease or asthma. Am. J. Respir. Crit. Care. Med. 153, 530 (1996). https://doi.org/10.1164/ajrccm.153.2.8564092
  38. Kharitonov, S. A. and Barnes, P. J. : Biomarkers of some pulmonary diseases in exhaled breath. Biomarkers, 7, 1 (2002). https://doi.org/10.1080/13547500110104233
  39. ATS/ERS Rcommendations for Standardized Procedures for the Online and Offline Measurement of Exhaled Lower Respiratory Nitric Oxide and Nasal Nitric Oxide, 2005. Am. J. Respir. Crit. Care. Med. 171, 912 (2005). https://doi.org/10.1164/rccm.200406-710ST
  40. Montuschi, P., Kharitonov, S. A. and Barnes, P. J. : Exhaled carbon monoxide and nitric oxide in COPD. Chest 120, 496 (2001). https://doi.org/10.1378/chest.120.2.496
  41. Paredi, P., Kharitonov, S. A., Leak, D., Ward, S., Cramer, D. and Barnes, P. J. : Exhaled ethane, a marker of lipid peroxidation, is elevated in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care. Med. 162, 369 (2000). https://doi.org/10.1164/ajrccm.162.2.9909025
  42. Montuschi, P. and Barnes, P. J. : Analysis of exhaled breath condensate for monitoring airway inflammation. Trends. Pharmacol. Sci. 23, 232 (2002). https://doi.org/10.1016/S0165-6147(02)02020-5
  43. Dekhuijzen, P. N., Aben, K. K., Dekker, I., Aarts, L., Wielders, P., van Herwaarden, C. and Bast, A. : Increased exhalation of hydrogen peroxide in patients with stable and unstable chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care. Med. 154, 813 (1996). https://doi.org/10.1164/ajrccm.154.3.8810624
  44. Kostikas, K., Papatheodorou, G., Psathakis, K., Panagou, P. and Loukides, S. : Oxidative stress in expired breath condensate of patients with COPD. Chest 124, 1373 (2003). https://doi.org/10.1378/chest.124.4.1373
  45. Montuschi, P., Collins, J. V., Ciabattoni, G., Lazzeri, N., Corradi, M., Kharitonov, S. A. and Barnes, P. J. : Exhaled 8-isoprostane an in vivo biomarker of lung oxidative stress in patients with COPD and healthy smokers. Am. J. Respir. Crit. Care. Med. 162, 1175 (2000). https://doi.org/10.1164/ajrccm.162.3.2001063
  46. Carpagnano, G. E., Resta, O., Foschino-Barnaro, M. P., Spanevello, A., Stefano, A., Di Gioia, G., Serviddio, G. and Gramiccioni, E. : Exhaled interleukin-6 and 8-isoprostane in chronic obstructive pulmonary disease: effect of carbocysteine lysine salt monohydrate (SCMC-Lys). Eur. J. Pharmacol. 505, 169 (2004). https://doi.org/10.1016/j.ejphar.2004.10.007
  47. Biernacki, W. A., Kharitonov, S. A. and Barnes, P. J. : Increased leukotriene B4 and 8-isoprostane in exhaled breath condensate of patients with exacerbations of COPD. Thorax 58, 294 (2003). https://doi.org/10.1136/thorax.58.4.294
  48. Corradi, M., Rubistein, I., Andreoli, R., Manini, P., Caglieri, A., Poli, D., Alinovi, R. and Mutti, A. : Aldehydes in exhaled breath condensate of patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care. Med. 167, 1380 (2003). https://doi.org/10.1164/rccm.200210-1253OC
  49. Corradi, M., Montuschi, P., Donnelly, L. E., Pesci, A., Kharitonov, S. A. and Barnes, P. J. : Increased nitrosothiols in exhaled breath condensate in inflammatory airway disease. Am. J. Respir. Crit. Care. Med. 163, 854 (2001). https://doi.org/10.1164/ajrccm.163.4.2001108
  50. Kostikas, K., Papatheodorou, G., Ganas, K., Psathakis, K., Panagou, P. and Loukides, S. : pH in expired breath condensate of patients with inflammatory airway disease. Am. J. Respir. Crit. Care. Med. 165, 1364 (2002).
  51. Borrill, Z., Starkey, C., Vestbo, J. and Singh, D. : Reproducibility of exhaled breath condensate pH in chronic obstructive pulmonary disease. Eur. Respir. J. 25, 269 (2005). https://doi.org/10.1183/09031936.05.00085804
  52. Montuschi, P. and Barnes, P. J. : Exhaled leukotrienes and prostaglandins in asthma. J. Allergy. Clin. Immunol. 109, 615 (2002). https://doi.org/10.1067/mai.2002.122461
  53. Kostikas, K., Gaga, M., Papatheodorou, G., Karamanis, T., Orphanidou, D. and Loukides, S. : Leukotriene B4 in exhaled breath condensate and sputum supernatant in patients with COPD and asthma. Chest 127, 1553 (2005). https://doi.org/10.1378/chest.127.5.1553
  54. Bucchioni, E., Kharitonov, S. A., Allegra, L. and Barnes, P. J. : High levels of interleukin-6 in the exhaled breath condensate of patients with COPD. Respir. Med. 97, 1299 (2003). https://doi.org/10.1016/j.rmed.2003.07.008
  55. Donaldson, G. C., Seemungal, T. A., Patel, I. S., Bhowmik, A., Wilkinson, T., Hurst, J. R., MacCallum, P. K. and Wedzicha, J. A. : Airway and systemic inflammation and decline in lung function in patients with COPD. Chest 128, 1995 (2005). https://doi.org/10.1378/chest.128.4.1995
  56. Pinto-Plata, V. M., Muellerova, H., Toso, J. F., Feudjo-Tepie, M., Soriano, J. B., Vessey, R. S. and Celli, B. R. : C-reactive protein in patients with COPD, control smokers and non-smokers. Thorax 61, 23 (2006).
  57. Broekhuizen, R., Wouters, E. F. M., Creutzberg, E. C. and Schols, A. M. W. J. : Raised CRP levels mark metabolic and functional impairment in advanced COPD. Thorax 61, 17 (2006).
  58. Gan, W. Q., Man, S. F., Senthilselvan, A. and Sin, D. D. : Association between chronic obstructive pulmonary disease and systemic inflammation: a systematic review and a metaanalysis. Thorax 59, 574 (2004). https://doi.org/10.1136/thx.2003.019588
  59. Malo, O., Sauleda, J., Busquets, X., Miralles, C., Agusti, A. G. and Noguera, A. : Systemic inflammation during exacerbations of chronic obstructive pulmonary disease. Arch. Bronconeumol. 38, 172 (2002). https://doi.org/10.1016/S0300-2896(02)75184-3
  60. Hurst, J. R., Perera, W. R., Wilkinson, T. M., Donaldson, G. C. and Wedzicha, J. A. : Systemic and upper and lower airway inflammation at exacerbation of chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care. Med. 173, 71 (2006). https://doi.org/10.1164/rccm.200505-704OC
  61. Vernooy, J. H., Kucukaycan, M., Jacobs, J. A., Chavannes, N. H., Buurman, W. A., Dentener, M. A. and Wouters, E. F. : Local and systemic inflammation in patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care. Med. 166, 1218 (2002). https://doi.org/10.1164/rccm.2202023
  62. Nguyen, L. T., Bedu, M., Caillaud, D., Beaufrere, B., Beaujon, G., Vasson, M.-P., Coudert, J. and Ritz, P. : Increased resting energy expenditure is related to plasma TNF-alpha concentration in stable COPD patients. Clin. Nutrit. 18, 269 (1999). https://doi.org/10.1016/S0261-5614(98)80023-X
  63. Vila, S., Miravitlles, M., Compos, F., de la Roza, C., Segura, R., Morell, F. and Vidal, R. : Importance of serum interleukin-6 as a mediator of systemic inflammation in patients with alpha-1 antitrypsin deficiency. Arch. Bronconeumol. 38, 263 (2002). https://doi.org/10.1016/S0300-2896(02)75210-1
  64. Boot, J., Panzer, P. and Diamant, Z. : A critical appraisal of methods used in early clinical development of novel drugs for the treatment of asthma. Pulm. Pharmacol. Ther. 20, 201 (2007). https://doi.org/10.1016/j.pupt.2006.02.001
  65. Wark, P. and Gibson, P. : Clinical usefulness of inflammatory markers in asthma. Am. J. Respir. Med. 2, 11 (2003). https://doi.org/10.1007/BF03256635
  66. Gutierrez, V., Prieto, L., Torres, V., Trenor, R., Perez, C., Berto, J. and Marin, J. : Relationship between induced sputum cell counts and fluid-phase eosinophil cationic protein and clinical of physiologic profiles in mild asthma. Ann. Allergy. Asthma. Immunol. 82, 559 (1999). https://doi.org/10.1016/S1081-1206(10)63167-5
  67. Pin, I., Freitag, A. and O'Byrne, P. : Changes in the cellular profile of induced sputum after allergen-induced asthmatic responses. Am. J. Respir. Crit. Care. Med. 145, 1265 (1992). https://doi.org/10.1164/ajrccm/145.6.1265
  68. in't Veen, J., Smits, H., Hiemstra, P., Zwinderman, A., Sterk, P. and Bel, E. : Lung function and sputum characteristics of patients with severe asthma during an induced exacerbation by double-blind steroid withdrawal. Am. J. Respir. Crit. Care. Med. 160, 93 (1999). https://doi.org/10.1164/ajrccm.160.1.9809104
  69. Di Franco, A., Bartoli, M, Carnevali, S., Cianchetti, S., Bacci, E., Dente, F., Giannini, D., Taccola, M., Vagaggini, B. and Paggiaro, P. : Analysis of sputum cell counts during spontaneous moderate exacerbations of asthma in comparison to the stable phase. J. Asthma. 20, 155 (2003).
  70. Gibson, P., Simpson, J., Hankin, R., Powell, H. and Henry, R. : Relationship between induced sputum eosinophils and the clinical pattern of childhood asthma. Thorax 58, 116 (2003) https://doi.org/10.1136/thorax.58.2.116
  71. Obase, Y., Shimoda, T., Mitsuta, K., Matsuo, N., Matsuse, H. and Kohno, S. : Correlation between airway hyperresponsiveness and airway inflammation in a young adult population: eosinophil, ECP, and cytokine levels in induced sputum. Ann. Allergy. Asthma. Immunol. 86, 304 (2001). https://doi.org/10.1016/S1081-1206(10)63303-0
  72. Jatakanon, A., Uasuf, C., Maziak, W., Lim, S., Chung, K. and Barnes, P. : Neutrophilic inflammation in severe persistent asthma. Am. J. Respir. Crit. Care. Med. 160, 1532 (1999). https://doi.org/10.1164/ajrccm.160.5.9806170
  73. Park, S., Kim, J., Chang, H., Park, S., Lee, Y., Park, J., Chun, I., Lee, J. and Park, C. : Association of interleukin-5 and eotaxin with acute exacerbation of asthma. Int. Arch. Allergy. Immunol. 131, 283 (2003). https://doi.org/10.1159/000072140
  74. Lamkhioued, B., Renzi, P., Abi-Younes, S., Garcia- zepada, E., Allakhverdi, Z., Ghaffar, O., Rothenburg, M., Luster, A. and Hamid, Q. : Increased expression of eotaxin in bronchoalveolar lavage and airways of asthmatics contributes to the chemotaxis of eosinophils to the site of inflammation. J. Immunol. 159, 4593 (1997).
  75. Lezcano-Meza, D., Negrete-Garcia, M., Dante-Escobedo, M. and Teran, L. : The monocyte-derived chemokine is released in the bronchoalveolar lavage fluid of steady-state asthmatics. Allergy 58, 1125 (2003). https://doi.org/10.1034/j.1398-9995.2003.00273.x
  76. Pilette, C., Francis, J., Till, S. and Durham, S. : CCR4 ligands are up-regulated in the airways of atopic asthmatics after segmental allergen challenge. Eur. Respir. J. 23, 876 (2004). https://doi.org/10.1183/09031936.04.00102504
  77. Liu, L., Jarjour, N., Busse, W. and Kelly, E. : Enhanced generation of helper T type 1 and 2 chemokines in allergen-induced aasthma. Am. J. Respir. Crit. Care. Med. 169, 1118 (2004). https://doi.org/10.1164/rccm.200312-1659OC
  78. Itillie-Leblond, I., Hammad, H., Desurmont, S., Pugin, J., Wallaert, B., Tonnel, A. and Gosset, P. : CC chemokines and interleukin-5 in bronchial lavage fluid from patients with status asthmaticus. Potential implication in eosinophil recruitment. Am. J. Respir. Crit. Care. Med. 162, 586 (2000).
  79. Tonnel, A., Gosset, P. and Tillie-Leblond, I. : Characteristics of the inflammatory response in bronchial lavage fluids from patients with status asthmaticus. Int. Arch. Allergy. Immunol. 124, 267 (2001). https://doi.org/10.1159/000053729
  80. Cardinale, F., de Benedictis, F. M., Muggeo, V., Giordano, P., Loffredo, M. S., Iacoviello, G. and Armenio, L. : Exhaled nitric oxide, total serum IgE and allergic sensitization in childhood asthma and allergic rhinitis. Pediatr. Allergy Immunol. 16, 236 (2005). https://doi.org/10.1111/j.1399-3038.2005.00265.x
  81. Kharitonov, S. A. ,Gonio, F., Kelly, C., Meah, S. and Barnes, P. J. : Reproducibility of exhaled nitric oxide measurements in healthy and asthmatic adults and children. Eur. Respir. J. 21, 433 (2003). https://doi.org/10.1183/09031936.03.00066903a
  82. Zeidler, M., Kleerup, E. and Tashkin, D. : Exhaled nitric oxide in the assessment of asthma. Curr. Opin. Pul. Med. 10, 31 (2003).
  83. Tateno, H., Nakamura, H., Minematsu, N., Nakajima, T., Takahashi, S., Nakamura, M., Fukunaga, K., Asano, K., Lilly, C. and Yamaguchi, K. : Plasma eotaxin level and severity of asthma treated with corticosteroid. Respir. Med. 98, 782 (2004). https://doi.org/10.1016/j.rmed.2004.01.005
  84. Leung, T., Wong, G., Ko, F., Lam, C. and Fok, T. : Increased macrophage-derived chemokine in exhaled breath condensate and plasma from children with asthma. Clin. Exp. Allergy 34, 786 (2004). https://doi.org/10.1111/j.1365-2222.2004.1951.x
  85. Kalayci, O., Sonna, L., Woodruff, P., Camargo, C., Luster, A. and Lilly, C. : Monocyte chemotactic protein-4 (MCP-4; CCL-13): A biomarker of asthma. J. Asthma. 41, 27 (2004). https://doi.org/10.1081/JAS-120024590
  86. Baraldi, E., Carraro, S., Alinovi, R., Pesci, A., Ghiro, L., Bodini, A., Piacentini, G., Zacchello, F. and Zanconato, S. : Cysteinyl leukotrienes and 8-isoprostane in exhaled breath condensate of children with asthma exacerbations. Thorax 58, 505 (2003). https://doi.org/10.1136/thorax.58.6.505
  87. Turner, S. : Exhaled nitric oxide in the diagnosis and management of asthma. Curr. Opin. Allergy Clin. Immunol. 8, 70 (2008). https://doi.org/10.1097/ACI.0b013e3282f3b4b0
  88. Abdel-Rahman, A., El-Sahrigy, S. and Bakr, S. : A comparative study of two angiogenic facters: vascular endothelial growth factor and angiogenin in induced sputum from asthmatic children in acute attack. Chest 129, 266 (2006). https://doi.org/10.1378/chest.129.2.266
  89. Lazarus, R., Raby, B. A., Lange, C., Silverman, E. K., Kwiatkowski, D. J., Vercelli, D., Klimecki, W. J., Martinez, F. E. and Weiss, S. T. : TOLL-like receptor 10 genetic variation is associated with asthma in two independent samples. Am. J. Respir. Crit. Care. Med. 170, 594 (2004). https://doi.org/10.1164/rccm.200404-491OC
  90. Sagel, S. D., Chmiel, J. F. and Konstan, M. W. : Sputum biomarkers of inflammation in cystic fibrosis lung disease. Proc. Am. Thorac. Soc. 4, 406 (2007). https://doi.org/10.1513/pats.200703-044BR
  91. Kerem, E., Reisman, J., Corey, M., Canny, G. J. and Levison, H. : Prediction of mortality in patients with cystic fibrosis. New Engl. J. Med. 326, 1187 (1992). https://doi.org/10.1056/NEJM199204303261804
  92. Brody, A. S., Molina, P. L., Klein, J. S., Rothman, B. S., Ramagopal, M. and Swartz, D. R. : High-resolution computed tomography of the chest in children with cystic fibrosis: support for use as an outcome surrogate. Pediatr. Radiol. 29, 731 (1999). https://doi.org/10.1007/s002470050684
  93. Brody, A. S., Tiddens, H. A. W. M., Gastile, R. G., Coxson, H. O., de Jong, P. A., Goldin, J., Huda, W., Long, F. R., McNitt- Gray, M., Rock, M., Robinson, T. E. and Sagel, S. G. for the CT Scanning in Cystic Fibrosis Special Interest Group : Computed tomography in the evaluation of cystic fibrosis lung disease. Am. J. Respir. Crit. Care. Med. 172, 1246 (2005). https://doi.org/10.1164/rccm.200503-401PP
  94. Zeisberg, M. and Neilson, E. G. : Biomarkers for epithelialmesenchymal transitions. J. Clin. Invest. 119, 1429 (2009). https://doi.org/10.1172/JCI36183
  95. Suraokar, M. B., Lin, H., He, D., Llansa, N., Mendoza, G., Woods, D., Prudkin, L., Lee, J. J., Wistuba, I. I. and Tsao, A. S. : High expression of epithelial-mesenchymal transition (EMT) markers in malignant mesothelioma and possible therapeutic intervention using an N-cadherin antagonist. 2008 ASCO Annual Meeting abstr 8067 (2008).
  96. Matsuzaki, K. and Okazaki, K. : Transforming growth factorbeta during carcinogenesis: the shift from epithelial to mesenchymal signaling. J. Gastroenterol. 41, 295 (2006). https://doi.org/10.1007/s00535-006-1795-0
  97. Kinnula, V. L. and Myllarniemi, M. : Oxidant-antioxidant imbalance as a potential contributor to the progression of human pulmonary fibrosis. Antioxid Redox Sign 10(4), 727 (2008). https://doi.org/10.1089/ars.2007.1942
  98. Strieter, R. M., Starko, K. M., Enelow, R. I., Noth, I., Valentine, V. G. and the other members of the Idiopathic Pulmonary Fibrosis Biomarkers Study Group : Effects of interferon-gamma 1b on biomarker expression in patients with idiopa ahic pulmonary fibrosis. Am. J. Respir. Crit. Care. Med. 170, 133 (2004). https://doi.org/10.1164/rccm.200312-1670OC
  99. Kucher, N. and Goldhaber, S. Z. : Cardiac biomarkers for risk stratification of patients with acute pulmonary embolism. Circulation 108, 2191 (2003). https://doi.org/10.1161/01.CIR.0000100687.99687.CE
  100. Soehne, M., ten Wolde, M. and Bueller, H. R. : Biomarkers in pulmonary embolism. Current Opinion in Cardiology 19, 558 (2004). https://doi.org/10.1097/01.hco.0000138991.82347.0e
  101. Torbicki, A., Pruszczyk, P. and Kurzyna, M. : Pulmonary embolism: role of echocardiography and of biological markers. Ital. Heart. J. 6(10), 805 (2005).
  102. Harrison, A. and Amundson, S. : Evaluation and management of the acutely dyspneic patient: the role of biomarkers. Am. J. Emerg. Med. 23, 371 (2005). https://doi.org/10.1016/j.ajem.2005.02.017
  103. Kucher, N. and Goldhaber, S. Z. : Risk stratification of acute pulmonary embolism. Semin Thromb Hemost 32, 838 (2006). https://doi.org/10.1055/s-2006-955466
  104. Kucher, N., Printzen, G. and Goldhaber, S. Z. : Prognostic role of brain natriuretic peptide in acute pulmonary embolism. Circulation 107, 2545 (2003). https://doi.org/10.1161/01.CIR.0000074039.45523.BE
  105. Kucher, N., Printzen, G., Doernhoefer, T., Windecker, S., Meier, B. and Hess, O. M. : Low pro-brain natriuretic peptide levels predict benign clinical outcome in acute pulmonary embolism. Circulation 107, 1576 (2003). https://doi.org/10.1161/01.CIR.0000064898.51892.09
  106. Kline, J. A., Hernandez-Nino, J., Rose, G., Norton, H. J. and Camargo, C. A. Jr. : Surrogate markers for adverse outcomes in normotensive patients with pulmonary embolism. Crit. Care. Med. 34(11), 2773 (2006). https://doi.org/10.1097/01.CCM.0000241154.55444.63
  107. Jaffer, F. A., Libby, P. and Weissleder, R. : Molecular imaging of cardiovascular disease. Circulation 116, 1052 (2007). https://doi.org/10.1161/CIRCULATIONAHA.106.647164
  108. de Raucourt, E., Meyer, G., Landais, P., Gouaref, Z., Morinet, P., Monge, F., Sors, H. and Fischer, A. M. : Markers of hemostatic system activation in pulmonary embolism. Changes during and after cessation of anticoagulant treatment. Blood Coagul Fibrinolysis 11(3), 249 (2000).
  109. Rasp, G. and Hochstarasser, K. : Tryptase in nasal fluid is a useful marker of allergic rhinitis. Allergy 48(2), 72 (1993). https://doi.org/10.1111/j.1398-9995.1993.tb00688.x
  110. Fang, S.-Y. and Shen, C.-L. : Neuropeptide innervations and neuroendocrine cells in allergic rhinitis and chronic hypertrophic rhinitis. Clin. Exper. Allergy 28, 228 (1998). https://doi.org/10.1046/j.1365-2222.1998.00204.x
  111. Francis, J. N., Lloyd, C. M., Sabroe, I., Durham, S. R. and Till, S. J. : T lymphocytes expressing CCR3 are increased in allergic rhinitis compared with non-allergic controls and following allergen immunotherapy. Allergy 62, 59 (2007). https://doi.org/10.1111/j.1398-9995.2006.01253.x
  112. Yariktas, M., Demirci, M., Aynali, G., Kaya, S. and Doner, F. : Relationship between Toxocara seropositivity and allergic rhinitis. Am. J. Rhinol. 21, 248 (2007). https://doi.org/10.2500/ajr.2007.21.2990
  113. Henriksen, A. H., Sue-Chu, M., Lingaas Holmen, T., Langhammer, A. and Bjermer, L. : Exhaled and nasal NO level in allergic rhinitis: relation to sensitization, pollen season and bronchial hyperresponsiveness. Eur. Respir. J. 13, 301 (1999). https://doi.org/10.1034/j.1399-3003.1999.13b14.x
  114. Santamaria, F., Montella, S., Camera, L., Palumbo, C., Greco, L. and Boner, A. L. : Lung structure abnormalities, but normal lung function in pediatric bronchiectasis. Chest 130, 480 (2006). https://doi.org/10.1378/chest.130.2.480
  115. Nel, A. E., Strachan, A. F., Welke, H. E. and de Beer, F. C. : Acute phase response in bronchiectasis and bronchus carcinoma. Respiration 47, 196 (1985). https://doi.org/10.1159/000194769
  116. Frank, R. and Hargreaves, R. : Clinical biomarkers in drug discovery and development. Nat. Rev. Drug. Discov. 2, 566 (2003). https://doi.org/10.1038/nrd1130
  117. Yamabuki, T., Takano, A., Hayama, S., Ishikawa, N., Kato, T., Miyamoto, M., Ito, T., Ito, H., Miyagi, Y., Nakayama, H., Fujita, M., Hosokawa, M., Tsuchiya, E., Kohno, N., Kondo, S., Nakamura, Y. and Daigo, Y. : Dikkopf-1 as a novel serologic and prognostic biomarker for lung and esophageal carcinomas. Cancer. Res. 67(6), 2517 (2007). https://doi.org/10.1158/0008-5472.CAN-06-3369
  118. Sekine, I., Tamura, T., Kunitoh, H., Kubota, K., Shinkai, T., Kamiya, Y. and Saijo, N. : Progressive disease rate as a surrogate endpoint of phase II trials for non-small-cell lung cancer. Annals of Oncology 10, 731 (1999). https://doi.org/10.1023/A:1008303921033