Estimation of Survival Function and Median Survival Time in Interval-Censored Data

구간중도절단자료에서 생존함수와 중간생존시간에 대한 추정

  • Yun, Eun-Young (Department of Nursing, College of Medical and Life Science, Silla University) ;
  • Kim, Choong-Rak (Department of Statistics, Pusan National University)
  • 윤은영 (신라대학교 의생명과학대학 간호학과) ;
  • 김충락 (부산대학교 통계학과)
  • Received : 20100400
  • Accepted : 20100500
  • Published : 2010.06.30


Interval-censored observations are common in medical and epidemiologic studies; however, limited studies exist due to the complexity and special structure of interval-censoring. This paper introduces the imputation method and the self consistency method in the interval-censored data. We propose a new method of generating random numbers under an interval-censoring set-up. Through simulation studies we compare two methods under various simulation schemes in the sense of the mean squared error for estimating the median survival time and the mean integrated squared error for estimating the survival function. Under a moderate censoring percentage, the mean imputation method showed a better performance than the self-consistency method in estimating the median survival time and the survival function.


Supported by : 부산대학교


  1. Finkelstein, D. M. (1986). A proportional hazards model for interval-censored failure time data, Biometrics, 42, 845-854.
  2. Gentleman, R. and Geyer, C. J. (1994). Maximum likelihood for interval censored data: Consistency and computation, Biometrika, 81, 618-623.
  3. Goedert, J. J., Kessler, C. M., Aledort, L. M., Biggar, R. J., Andes, W. A., White, G. C., Drummond, J. E., Vaidya, K., Mann, D. L., Eyster, M. E., Lederman, M. M., Hilgartner, M. W., Ragni, M. V., Cohen, A. R., Gordon, L. B., Rosenberg, P. S., Friedman, R. M., Blattner, W. A., Kroner, B. and Gail, M. H. (1989). A prospective-study of human immunodeficiency virus type-1 infection and the development of AIDS in subjects with hemophilia, New England Journal of Medicine, 321, 1141-1148.
  4. Groeneboom, P. and Wellner, J. A. (1992). Information bounds and nonparametric maximum likelihood estimation, DMV Seminar, Band 19, Birkhauser, New York.
  5. Huang, J. and Wellner, J. A. (1997). Interval censored survival data: A review of recent progress, Proceedings of the First Seattle Symposium in Biostatistics: Survival Analysis, eds. Lin, D. and Fleming, T. Springer Verlag, New York, 123-169.
  6. Jongbloed, G. (1998). The iterative convex minorant algorithm for nonparametric estimation, Journal of Computational and Graphical Statistics, 7, 310-321.
  7. Kaplan, E. L. and Meier, P. (1958). Nonparametric estimation from incomplete observations, Journal of the American Statistical Association, 53, 457-481.
  8. Odell, P. M., Anderson, K. M. and D'Agostino, R. B. (1992). Maximum likelihood estimation for interval-censored data using a Weibull-based accelerated failure time model, Biometrics, 48, 951-959.
  9. Rubin, D. B. (1987). Multiple Imputation for Nonresponse in Surveys, John Wiley, New York.
  10. Sun, J. (1998). Interval Censoring. Encyclopedia of Biostatistics, John Wiley, First Edition, New York, 2090-2095.
  11. Sun, J. (2005). Interval Censoring. Encyclopedia of Biostatistics, John Wiley, Second Edition, New York, 2603-2609.
  12. Sun, J. (2006). The Statistical Analysis of Interval-Censored Failure Time Data, Springer Verlag, New York.
  13. Taylor, J. M. G. and Kim, D. K. (1994). Marker values at the time of an AIDS diagnosis, Statistics in Medicine, 13, 2059-2066.
  14. Turnbull, B. W. (1976). The empirical distribution with arbitrarily grouped censored and truncated data, Journal of the Royal Statistical Society, Series B, 38, 290-295.
  15. Wellner, J. and Zhan, Y. (1997). A hybird algorithm for computation of the nonparametric maximum likelihood estimator from censored data, Journal of the American Statistical Association, 92, 945-959.

Cited by

  1. A Comparison of Testing Methods for Equality of Survival Distributions with Interval Censored Data vol.25, pp.3, 2012,