DOI QR코드

DOI QR Code

SAMD4B, a novel SAM-containing protein, inhibits AP-1-, p53- and p21-mediated transcriptional activity

  • Luo, Na (The Center for Heart Development, Key Lab of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University) ;
  • Li, Guan (The Center for Heart Development, Key Lab of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University) ;
  • Li, Yongqing (The Center for Heart Development, Key Lab of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University) ;
  • Fan, Xiongwei (The Center for Heart Development, Key Lab of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University) ;
  • Wang, Yuequn (The Center for Heart Development, Key Lab of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University) ;
  • Ye, Xiangli (The Center for Heart Development, Key Lab of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University) ;
  • Mo, Xiaoyan (The Center for Heart Development, Key Lab of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University) ;
  • Zhou, Junmei (The Center for Heart Development, Key Lab of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University) ;
  • Yuan, Wuzhou (The Center for Heart Development, Key Lab of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University) ;
  • Tan, Ming (The Center for Heart Development, Key Lab of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University) ;
  • Xie, Huaping (The Center for Heart Development, Key Lab of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University) ;
  • Ocorr, Karen (The Center for Heart Development, Key Lab of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University) ;
  • Bodmer, Rolf (The Center for Heart Development, Key Lab of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University) ;
  • Deng, Yun (The Center for Heart Development, Key Lab of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University) ;
  • Wu, Xiushan (The Center for Heart Development, Key Lab of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University)
  • Received : 2010.02.08
  • Accepted : 2010.03.23
  • Published : 2010.05.31

Abstract

The sterile alpha motif (SAM) is a putative protein interaction domain involved in a wide variety of biological processes. Here we report the identification and characterization of a novel gene, SAMD4B, which encodes a putative protein of 694 amino acids with a SAM domain. Northern blot and RT-PCR analysis showed that SAMD4B is widely expressed in human embryonic and adult tissues. Transcriptional activity assays show SAMD4B suppresses transcriptional activity of L8G5-luciferase. Over-expression of SAMD4B in mammalian cells inhibited the transcriptional activities of activator protein-1 (AP-1), p53 and p21, and the inhibitory effects can be relieved by siRNA. Deletion analysis indicates that the SAM domain is the main region for transcriptional suppression. The results suggest that SAMD4B is a widely expressed gene involved in AP-1-, p53- and p21-mediated transcriptional signaling activity.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China, National Basic Research Program of China, Hunan Normal University

References

  1. Levine, A. J., Hu, W. and Feng, Z. (2006) The P53 pathway: what questions remain to be explored? Cell Death Differ. 13, 1027-1036. https://doi.org/10.1038/sj.cdd.4401910
  2. Giaccia, A. J. and Kastan, M. B. (1998) The complexity of p53 modulation: emerging patterns from divergent signals. Genes Dev. 12, 2973-2983. https://doi.org/10.1101/gad.12.19.2973
  3. Harris, S. L. and Levine, A. J. (2005) The p53 pathway: positive and negative feedback loops. Oncogene 24, 2899-2908. https://doi.org/10.1038/sj.onc.1208615
  4. Shaulian, E. and Karin, M. (2001) AP-1 in cell proliferation and survival. Oncogene 20, 2390-2400. https://doi.org/10.1038/sj.onc.1204383
  5. Zhang, J., Zhang, D., Mcquade, J. S., Behbehani, M., Tsien, J. Z. and Xu, M. (2002) c-fos regulates neuronal excitability and survival. Nat. Genet. 30, 416-420. https://doi.org/10.1038/ng859
  6. Gorospe, M., Ciriell, C., Wang, X., Seth, P., Capogrossi, M. C. and Holbrook, N. J. (1997) p21(Waf1/Cip1) protects against p53-mediated apoptosis of human melanoma cells. Oncogene 14, 929-935. https://doi.org/10.1038/sj.onc.1200897
  7. Niculescu, A. B., Chen, X., Smeets, M., Hengst, L., Prives, C. and Reed, S. I. (1998) Effects of p21(Cip1/Waf1) at both the G1/S and the G2/M cell cycle transitions: pRb is a critical determinant in blocking DNA replication and in preventing endoreduplication. Mol. Cell Biol. 18, 629-634.
  8. Schultz, J., Ponting, C. P., Hofmann, K. and Bork, P. (1997) SAM as a protein interaction domain involved in developmental regulation. Protein. Sci. 6, 249-253. https://doi.org/10.1002/pro.5560060128
  9. Thanos, C. D., Goodwill, K. E. and Bowie, J. U. (1999) Oligomeric structure of the human EphB2 receptor SAM domain. Science 283, 833-836. https://doi.org/10.1126/science.283.5403.833
  10. Ponting, C. P. (1995) SAM: a novel motif in yeast sterile and Drosophila polyhomeotic proteins. Protein Sci. 4, 1928-1930. https://doi.org/10.1002/pro.5560040927
  11. Asher, G., Tsvetkov, P., Kahana, C. and Shaul, Y. (2005) A mechanism of ubiquitin-independent proteasomal degradation of the tumor suppressors p53 and p73. Genes Dev. 19, 316-321. https://doi.org/10.1101/gad.319905
  12. Barrera, F. N., Poveda, J. A., Gonzalez-Ros, J. M. and Neira, J. L. (2003) Binding of the C-terminal Sterile_Motif (SAM) Domain of Human p73 to Lipid Membranes. J. Biol. Chem. 278, 46878-46885. https://doi.org/10.1074/jbc.M307846200
  13. Hu, J. J., Yuan, W. Z., Tang, M., Wang, Y. Q., Fan, X. W., Mo, X. Y., Li, Y. Q., Ying, Z. C., Wan, Y. Q., Ocorr, K., Bodmer, R., Deng, Y. and Wu, X. S. (2010) KBTBD7, a novel human BTB-kelch protein, activates transcriptional activities of SRE and AP-1. BMB Rep. 43, 17-22. https://doi.org/10.5483/BMBRep.2010.43.1.017
  14. Ghioni, P., Bolognese, F., Duijf, P. H., Van Bokhoven, H., Mantovani, R. and Guerrini, L. (2002) Complex transcriptional effects of p63 isoforms: identification of novel activation and repression domains. Mol. Cell Biol. 22, 8659-8668. https://doi.org/10.1128/MCB.22.24.8659-8668.2002
  15. Koutsodontis, G., Tentes, I., Papakosta, P., Moustakas, A., and Kardassis, D. (2001) Sp1 Plays a Critical Role in the Transcriptional Activation of the Human Cyclin-dependent Kinase Inhibitor p21WAF1/Cip1 Gene by the p53 tumor suppressor protein. J. Biol. Chem. 276, 29116-29125. https://doi.org/10.1074/jbc.M104130200
  16. Stepniak, E., Ricci, R., Eferl, R., Sumara, G., Sumara, I., Rath, M., Hui, L. and Wagner, E. F. (2006) c-Jun/AP-1 controls liver regeneration by repressing p53/p21 and p38 MAPK activity. Genes Dev. 20, 2306-2314. https://doi.org/10.1101/gad.390506
  17. Elkeles, A., Juven-Gershon, T., Israeli, D., Wilder, S., Zalcenstein, A. and Oren, M. (1999) The c-fos protooncogene is a target for transactivation by the p53 tumor sup-pressor. Mol. Cell Biol. 19, 2594-2600. https://doi.org/10.1128/MCB.19.4.2594
  18. Miled, C., Pontoglio, M., Garbay, S., Yaniv, M. and Weitzman, J. B. (2005) A genomic map of p53 binding sites identifies novel p53 targets involved in an apoptotic network. Cancer Res. 65, 5096-5104. https://doi.org/10.1158/0008-5472.CAN-04-4232
  19. Luo, K., Yuan, W. Z., Pi, H., Li, Y. Q., Zhu, C., Zhou, L., Jiao, W., Wang, Y. Q., Wu, X. S. and Liu, M. Y. (2002) Expression of a novel Krüpple-like zincfinger gene, ZNF382, in human heart. Biochem. Biophys. Res. Commun. 299, 606-612. https://doi.org/10.1016/S0006-291X(02)02700-6
  20. Zhou, L., Zhu, C. B., Luo, K. M., Li, Y. Q., Pi, H. L., Yuan, W. Z., Wang, Y. Q., Huang, C., Liu, M. Y. and Wu, X. S. (2002) Identification and characterization of two novel zinc finger genes, ZNF359 and ZFP28, in human development. Biochem. Biophys. Res. Commun. 295, 862-868. https://doi.org/10.1016/S0006-291X(02)00759-3
  21. Wang, Y., Li, Y., Zeng, W., Zhu, C., Xiao, J., Yuan, W., Wang, Y., Cai, Z., Zhou, J., Liu, M. and Wu, X. (2004) IXL, a new subunit of the mammalian Mediator complex, functions as a transcriptional suppressor. Biochem. Biophys. Res. Commun. 325, 1330-1338. https://doi.org/10.1016/j.bbrc.2004.10.159
  22. Cheng, Y., Wang, Y., Li, Y., Deng, Y., Hu, J., Mo, X., Li, N., Li, Y., Luo, N., Yuan, W., Xiao, J., Zhu, C., Wu, X. and Liu, M. (2006) A novel human gene ZNF415 with five isoforms inhibits AP-1- and p53-mediated transcriptional activity. Biochem. Biophys. Res. Commun. 351, 33-39. https://doi.org/10.1016/j.bbrc.2006.09.161
  23. Deng, Y., Liu, B. S., Fan, X. W., Wang, T. Q., Tang, M., Mo, X. Y., Li, Y. Q., Ying, Z. C., Wan, Y. Q., Luo, N., Zhou, J. M., Wu, X. S. and Yuan, W. Z. (2010) ZNF552, a novel human KRAB/C2H2 zinc finger protein, inhibits AP-1 and SRE-mediated transcriptional activity. BMB Rep. 43, 212-218. https://doi.org/10.5483/BMBRep.2010.43.3.212
  24. Xia, C., Ma, W., Stafford, L. J., Marcus, S., Xiong, W. C. and Liu, M. (2001) Regulation of the p21-activated kinase (PAK) by a human G-beta-like WD-repeat protein, hPIP1. Proc. Natl. Acad. Sci. 98, 6174-6179. https://doi.org/10.1073/pnas.101137298
  25. Zhao, Y. L., Zhou, L., Liu, B. S., Deng, Y., Wang, Y., Wang, Y. Q., Huang, W., Yuan, W. Z., Wang, Z., Zhu, C. B., Liu, M. Y., Wu, X. S. and Li, Y. Q. (2006) ZNF325, a novel human zinc finger protein with a RBaK-like RB-binding domain, inhibits AP-1- and SRE-mediated transcriptional activity. Biochem. Biophys. Res. Commun. 346, 1191-1199. https://doi.org/10.1016/j.bbrc.2006.06.031

Cited by

  1. Mutation of mouse Samd4 causes leanness, myopathy, uncoupled mitochondrial respiration, and dysregulated mTORC1 signaling vol.111, pp.20, 2014, https://doi.org/10.1073/pnas.1406511111
  2. Expression and localization of sterile alpha motif domain containing 5 is associated with cell type and malignancy of biliary tree vol.12, pp.4, 2017, https://doi.org/10.1371/journal.pone.0175355
  3. Distinct differences in global gene expression profiles in non-implanted blastocysts and blastocysts resulting in live birth vol.571, pp.2, 2015, https://doi.org/10.1016/j.gene.2015.06.057
  4. Toward a comprehensive characterization of the phosphotyrosine proteome vol.23, pp.8, 2011, https://doi.org/10.1016/j.cellsig.2011.03.021