Tissue-specific gene expression analysis of silkworm (Bombyx mori) by quantitative real-time RT-PCR

  • Park, Seung-Won (Department of Agricultural Biology, National Academy of Agricultural Science, Rural Development Association) ;
  • Kang, Seok-Woo (Department of Agricultural Biology, National Academy of Agricultural Science, Rural Development Association) ;
  • Goo, Tae-Won (Department of Agricultural Biology, National Academy of Agricultural Science, Rural Development Association) ;
  • Kim, Seong-Ryul (Department of Agricultural Biology, National Academy of Agricultural Science, Rural Development Association) ;
  • Lee, Gwang-Gill (Department of Agricultural Biology, National Academy of Agricultural Science, Rural Development Association) ;
  • Paik, Soon-Young (Department of Microbiology, College of Medicine, The Catholic University of Korea)
  • Received : 2009.11.12
  • Accepted : 2010.06.07
  • Published : 2010.07.31


The Bombyx mori Microarray Database (BmMDB; provides information for tissue-specific gene expression by using the whole-genome oligonucleotide microarray in the silkworm. We analyzed the tissue-specific expression patterns in the silk gland, fat body, and midgut five days of fifth instar larvae during the development of B. mori. To verify the tissue-specific expression, analysis was conducted using quantitative Real-time RT-PCR and the highly expressed endogenous Actin RNA as an intrinsic reference. Finally, we confirmed five genes, (sw15872, sw00692, sw20990, sw05300,and sw2250), out of 18 candidates expressed in two different tissues, which was consistent with the data published by Dr. Xiang's group, thereby supporting the BmMDB. Further studies for promoter regions of candidate genes can be applied in creating transgenic silkworms as biomedical insects for use in producing biomaterials, and to serve as well-characterized models for understanding the mechanism for the genetic regulation of tissue-specific development.


Supported by : Rural Development Administration


  1. International Silkworm Genome Consortium. (2008) The genome of a lepidopteran model insect, the silkworm Bombyx mori. Insect Biochem. Mol. Biol. 38, 1036-1045.
  2. Fuchs, S., Jiang, X., Schmidt, H., Dohle, E., Ghanaati, S., Orth, C., Hofmann, A., Motta, A., Migliaresi, C. and Kirkpatrick, C. J. (2009) Dynamic processes involved in the pre-vascularization of silk fibroin constructs for bone regeneration using outgrowth endothelial cells. Biomaterials 30, 1329-1338.
  3. Gong, Z. H., Jin, H. Q., Jin, Y. F. and Zhang, Y. Z. (2005) Expression of Cholera Toxin B Subunit and Assembly as Functional Oligomers in Silkworm. J. Biochem. Mol. Biol. 38, 717-724.
  4. Yun, E. Y., Lee, J. K., Kwon, O. Y., Hwang, J. S., Kim, I., Kang, S. W., Lee, W. J., Ding, J. L., You, K. H. and Goo, T. W. (2009) Bombyx mori transferrin: Genomic structure, expression and antimicrobial activity of recombinant protein. Dev. Comp. Immunol. 33, 1064-1069.
  5. Mita, K., Kasahara, M., Sasaki, S., Nagayasu, Y., Yamada, T., Kanamori, H., Namiki, N., Kitagawa, M., Yamashita, H., Yasukochi, Y., Kadono-Okuda, K., Yamamoto, K., Ajimura, M., Ravikumar, G., Shimomura, M., Nagamura, Y., Shin-I, T., Abe, H., Shimada, T., Morishita, S. and Sasaki, T. (2004) The genome sequence of silkworm, Bombyx mori. DNA Res. 29, 27-35.
  6. Mita, K., Morimyo, M., Okano, K., Koike, Y., Nohata, J., Kawasaki, H., Kadono-Okuda, K., Yamamoto, K., Suzuki, M. G., Shimada, T., Goldsmith, M. R. and Maeda, S. (2003) The construction of an EST database for Bombyx mori and its application. Proc. Natl. Acad. Sci. U.S.A. 100, 14121-14126.
  7. Ote, M., Mita, K., Kawasaki, H., Seki, M., Nohata, J., Kobayashi, M. and Shimada, T. (2004) Microarray analysis of gene expression profiles in wing discs of Bombyx mori during pupal ecdysis. Insect Biochem. Mol. Biol. 34, 775-784.
  8. Parthasarathy, R. and Gopinathan, K. P. (2005) Comparative analysis of the development of the mandibular salivary glands and the labial silk glands in the mulberry silkworm, Bombyx mori. Gene. Expr. Patterns. 5, 323-339.
  9. Xia, Q., Cheng, D., Duan, J., Wang, G., Cheng, T., Zha, X., Liu, C., Zhao, P., Dai, F., Zhang, Z., He, N., Zhang, L. and Xiang Z. (2007) Microarray-based gene expression profiles in multiple tissues of the domesticated silkworm, Bombyx mori. Genome Biol. 8, R162.
  10. Zavallo, D., Bilbao, M. L., Hopp, H. E. and Heinz, R. (2010) Isolation and functional characterization of two novel seed-specific promoters from sunflower (Helianthus annuus L.). Plant Cell Rep. 29, 239-248.
  11. Tomita, M., Munetsuna, H., Sato, T., Adachi, T., Hino, R., Hayashi, M., Shimizu, K., Nakamura, N., Tamura, T. and Yoshizato, K. (2002) Transgenic silkworms produce recombinanthuman type III procollagen in cocoons. Nat. Biotechnol. 21, 52-56.
  12. Castello, R., Estelles, A., Vazquez, C., Falco, C., Espana, F., Almenar, S. M., Fuster, C. and Aznar, J. (2002) Quantitative real-time reverse transcription-PCR assay for urokinase plasminogen activator, plasminogen activator inhibitor type 1, and tissue metalloproteinase inhibitor type 1 gene expressions in primary breast cancer. Clin. Chem. 48, 1288-1295.

Cited by

  1. Characterization of the Promoter Controling the Stage-Specific Gene Expression of Bombyx mori vol.21, pp.10, 2011,
  2. Hemocyte-specific Promoter for the Development of Transgenic Silkworm, Bombyx mori vol.25, pp.1, 2012,
  3. Analysis of Hemocyte-specific Gene Expression from Bombyx mori vol.23, pp.1, 2011,
  4. Alternative splicing, expression patterns and promoter characters of vasa-like gene from the silkworm, Bombyx mori vol.39, pp.5, 2012,
  5. Comparison of gloverin gene expression patterns between domesticated and wild silkworms vol.33, pp.2, 2016,
  6. Global Transcriptional Insights of Pollen-Pistil Interactions Commencing Self-Incompatibility and Fertilization in Tea [Camellia sinensis (L.) O. Kuntze] vol.20, pp.3, 2019,