DOI QR코드

DOI QR Code

Nonuniformity Correction Scheme Based on 3-dimensional Visualization of MRI Images

MRI 영상의 3차원 가시화를 통한 영상 불균일성 보정 기법

  • 김형진 (연세대 전산학과, (주)에이아이랩) ;
  • 서광덕 (연세대 컴퓨터정보통신공학부)
  • Received : 2009.12.10
  • Accepted : 2010.01.26
  • Published : 2010.04.30

Abstract

Human body signals collected by the MRI system are very weak, such that they may be easily affected by either external noise or system instability while being imaged. Therefore, this paper analyzes the nonuniformity caused by a design of the RF receiving coil in a low-magnetic-field MRI system, and proposes an efficient method to improve the image uniformity. In this paper, a method for acquiring 3D bias volume data by using phantom data among various methods for correcting such nonuniformity in MRI image is proposed, such that it is possible to correct various-sized images. It is shown by simulations that images obtained by various imaging methods can be effectively corrected using single bias data.

References

  1. Z.Hou, "A review on MR image intensity inhomogeneity correction," International Journal of Biomedical Imaging, Vol. 2006, Article ID 49515, pp. 1-11, 2006.
  2. L. Axel, J. Costantini, and J. Listerud, "Intensity correction in surface coil MR imaging," American Journal of Roentgenology, Vol. 148, pp. 418-420, 1987. https://doi.org/10.2214/ajr.148.2.418
  3. M. Tincher, C. R. Meyer, R. Gupta, and D. M. Williams, "Polynomial modeling and reduction of RF body coil spatial inhomogeneity in MRI," IEEE Trans. Medical Imaging, Vol. 12, No. 2, pp. 361-365, Jun. 1993. https://doi.org/10.1109/42.232267
  4. P. Narayana, W. Brey, M. Kulkarni, and C. Sievenpiper, "Compensation for surface coil sensitivity variation in magnetic resonance imaging," Magnetic Resonance Imaging, Vol. 6, pp. 271-274, 1988. https://doi.org/10.1016/0730-725X(88)90401-8
  5. R. Guillemaud, "Uniformity Correction with Homomorphic Filtering on Region of Interest," IEEE Int. Conference on Image Processing, Vol. 2, pp. 872-875, Oct. 1998.
  6. M. Styner, C. Brechbuhler, G. Szekely, and G. Gerig, "Parametric estimate of intensity inhomogeneities applied to MRl," IEEE Trans. Medical Imaging, Vol. 19, No. 3, pp.153-165, 2000. https://doi.org/10.1109/42.845174
  7. B. Likar, M. A. Viergever, and F. Pemus, "Retrospective correction of MR intensity inhomogeneity by information minimization," IEEE Trans. Medical Imaging, Vol. 20, No. 12, pp. 1398-1410, 2001. https://doi.org/10.1109/42.974934
  8. E. Ardizzone, R. Pirrone, and O. Gambino, "Frequency Determined Homomorphic Unsharp Masking Algorithm on Knee MR Images," Lecture Notes in Computer Science, Vol. 3617, 2005.
  9. D. Wicks, G. Barker, and P. Tofts, "Correction of intensity nonuniformity in MR images of any orientation," Magnetic Resonance Imaging, Vol. 11, No. 2, pp. 183-196, 1993. https://doi.org/10.1016/0730-725X(93)90023-7
  10. E. Haacke, "Magnetic Resonance Imaging: Physical Principles and Sequence Design," New York: John Wiley & Sons Inc., 1999.
  11. DICOM standard (DICOM PS 3-2008), National Electrical Manufacturers Association.
  12. D. Mitchell, "MRl Principles," W.B. Saunders Company, 2004.