Improvement of the Functional Qualities of Sea Tangle Extract through Fermentation by Aspergillus oryzae

  • Bae, Hyang-Nam (Department of Food Science and Technology, Pukyong National University) ;
  • Kim, Young-Mog (Department of Food Science and Technology, Pukyong National University)
  • Received : 2010.01.18
  • Accepted : 2010.03.15
  • Published : 2010.03.31


This study was conducted to evaluate the potential of a microbial fermentation procedure to improve the functional qualities of seaweeds. Aspergillus oryzae, which has been used in traditional Korean fermented foods, was inoculated and cultivated in an aqueous extract of sea tangle (Laminaria japonica). Fermentation of the sea tangle extract by A. oryzae for 4 days resulted in a 3-fold increase in $\gamma$-aminobutyric acid (GABA) content. GABA is known to be a bioactive compound. Fungal fermentation of the extract also enhanced its antioxidant activity and increased its total content of phenolic compounds. It was assumed that these changes stemmed from the biodegradation of active compounds of the sea tangle packaged within its rigid structural matrix or occurred as result of fungal fermentation. These results suggested that the application of microbial fermentation to the processing of seaweeds will help in the development of processed foods to meet consumer demands.


  1. Achinewhu SC, Barber LI and Ijeoma IO. 1998. Physicochemical properties and garification (gari yield) of selected cassava cultivars in Rivers State, Nigeria. Plant Foods Hum Nutr 52, 133-140.
  2. Adewusi SR, Ojumu TV, Falade OS. 1999. The effect of processing on total organic acids content and mineral availability of simulated cassava-vegetable diets. Plant Foods Hum Nutr 53, 367-380.
  3. AOAC. 1995. Official methods of analysis. 16th ed. Association of Official Analytical Chemists, Washinggton D.C., U.S.A., 49-59.
  4. Bugni TS and Chris M. 2004. Marine-derived fungi: a chemically and biologically diverse group of microorganism. Nat Prod Rep 21, 143-163.
  5. Chapman VJ and Chapman DJ. 1980. Seaweeds and their uses. Chapman and Hall, London, U.K, 195.
  6. Colliec S, Fischer AM, Tapon-Bretaudiere H, Boisson C, Durand P and Jozefonvicz J. 1991. Anticoagulant of a fucoidan fraction. Thrombosis Res 64, 143-147.
  7. Fainesale S, Keranen T, Daransaari P and Hokaniemi F. 2005, GABA and glutamate transporters are expressed in human. Mol Brain Res 141, 161-165
  8. Ferial HB, Mostafai E, Corinne S and Catherine BV. 2000. Relationship between sulfate groups and biological activities of fucans. Thromb Res 100, 453-459.
  9. Han J, Kang S, Choue R, Kim H, Leem K, Chung S, Kim C and Chung J. 2002. Free radical scavenging effect of Diospyros kaki, Laminaria japonica and Undaria pinatifida. Fitoterapia 73, 710-712.
  10. Heo SJ and Jeon YJ. 2005. Antioxidant effect and protection effect against cell damage by enzymatic hydrolysates from marine algae. J Food Ind Nutr 10, 31-41.
  11. Hiroyuki N, Hideomi A, Koichi A and Kazutosi N. 1990. Antitumor activity of marine algae. Hydrobiologia 204, 577-584.
  12. Jimenez-Escrig A, Jimenez-Jimenez I, Pulido Rand Saura-Calixto F. 2001. Antioxidant activity of fresh and processed edible seaweeds. J Sci Food Agric 81, 530-534.
  13. Ministry for Food, Agriculture, Forestry and Fisheries, 2008. Major Statistics of Food, Agriculture, Forestry and Fisheries, 412-417.
  14. Mody I, Dekoninck Y, Otis TS and Soltesz I. 1994. Bringing the cleft at GABA synapses in the brain. Trends Neurosci 17, 517-525.
  15. Nanjo F, Goto K, Seto R, Suzuki M, Sakai M and Hara Y. 1996. Scavenging effects of tea catechins and their derivatives on 1,1,-diphenyl-2-picrylhydrazyl radical. Free Radic Biol Med 21, 895-902.
  16. Nakagawa K and Onota A. 1996. Accumulation of $\gamma$-aminobutyric acid (GABA) in the rice germ. Shokuhin Kaihatsu 31, 43-46.
  17. Nishino T, Aizu Y and Nagumo T. 1991. The relationship between the molecular weight and the anticoagulant activity of two types of fucan sulfates from the brown seaweed Ecklonia kurom. Agric Biol Chem 55, 791-797.
  18. Oh SH. 2003. Stimulation of gamma-aminobutyric acid synthesis activity in brown rice by a chitosan/glutamic acid germination solution and calcium/calmodulin. J Biochem Mol Biol 36, 319-25.
  19. Park MJ and Han JS. 2006. Radical scavenging and antioxidant activities of fermented Laminaria japonica Extracts. J Food Sci Nutr 11, 10-16.
  20. Park JH, Kang KC, Baek SB, Lee YH and Rhee KS. 1991. Separation of antioxidant compounds from edible marine algae. J Kor Food Sci Technol 23, 256-261.
  21. Rokas A. 2009. The effect of domestication on the fungal proteome. TIG 25, 60-63.
  22. Slimestad R, Vangdal E and Brede C. 2009. Analysis of phenolic compounds in six Norwegian plum cultivars (Prunus domestica L.). J Agric Food Chem 57, 1370-1375.
  23. Somogy M. 1952. Notes on sugar determination. J Biol Chem 195, 19-23.
  24. Usui T, Asari K and Mizuno T. 1980. Isolation of highly fucoidan from Eisenia bicyclis and its anticoagulant and antitumor activities. Agric Biol Chem 44, 1965-1970.
  25. Yamane YI, Yocshii M, Mikami S, Fukuda H and Kizaki Y. 2000. A solid-state culture system using a cellulose carrier containing defined medium as a useful tool for investigating characteristics of koji culture. J Biosci Bioeng 89, 33-39.

Cited by

  1. Enhancement of Polyphenol Content and Antioxidant Activity of Brown Alga Eisenia bicyclis Extract by Microbial Fermentation vol.14, pp.3, 2011,
  2. Macroalgae as a sustainable aquafeed ingredient pp.17535123, 2018,