Chunking of Contiguous Nouns using Noun Semantic Classes

명사 의미 부류를 이용한 연속된 명사열의 구묶음

  • Received : 2010.01.25
  • Accepted : 2010.03.12
  • Published : 2010.03.28


This paper presents chunking strategy of a contiguous nouns sequence using semantic class. We call contiguous nouns which can be treated like a noun the compound noun phrase. We use noun pairs extracted from a syntactic tagged corpus and their semantic class pairs for chunking of the compound noun phrase. For reliability, these noun pairs and semantic classes are built from a syntactic tagged corpus and detailed dictionary in the Sejong corpus. The compound noun phrase of arbitrary length can also be chunked by these information. The 38,940 pairs of 'left noun - right noun', 65,629 pairs of 'left noun - semantic class of right noun', 46,094 pairs of 'semantic class of left noun - right noun', and 45,243 pairs of 'semantic class of left noun - semantic class of right noun' are used for compound noun phrase chunking. The test data are untrained 1,000 sentences with contiguous nouns of length more than 2randomly selected from Sejong morphological tagged corpus. Our experimental result is 86.89% precision, 80.48% recall, and 83.56% f-measure.


Chunking;Compound Noun Phrase;Syntax Analysis;Natural Language Processing


  1. S. Abney, “Parsing by Chunks,” In R.C. Berwick, S.P. Abney and C. Tenny, editors, Principle-Based Parsing: Computation and Psycholinguistics, Kluwer, pp.257-278, 1991.
  2. Ramshaw, M. Marcus, "Text chunking using transformation-based learning," In Proceedings of the Third ACL Workshop on Very Large Corpora, Association for Computational Linguistics, pp.157-176, 1995.
  3. Bourigault, "Surface grammatical analysis for the extraction of terminological noun phrase," In Proceeding of the Fifteenth International Conference on Computational Linguistics, pp.977-981, 1992.
  4. Kupiec, "An algorithm for finding noun phrase correspondences in bilingual corpora," In Proceeding of the 31st Annual Meeting of the Association for Computational Linguistics, pp.17-22, 1993.
  5. Voutilainen, "NPTool, a detector of English noun phrase," In Proceedings of the Workshop on Very Large Corpora, Association for Computational Linguistics, pp.48-57, 1993.
  6. 양재형, “규칙 기반 학습에 의한 한국어의 기반 명사구 인식”, 정보과학회 논문지, 제27권, 제10호, pp. 1062-1071, 2000.
  7. 황영숙, 정후중, 박소영, 곽용재, 임해창, “자질집합선택 기반의 기계학습을 통한 한국어 기본구인식의 성능향상”, 정보과학회논문지:소프트웨어 및 응용, 제29권, 제9호, pp.654-668, 2002.
  8. 서충원, 오종훈, 최기선, “어절의 중심어 정보를 이용한 한국어 기반 명사구 인식”, 제15회 한글 및 한국어 정보처리 학술대회, pp.145-151, 2003.
  9. 최용석, 신지애, 최기선, “확률모형과 수식정보를 이용한 와/과 병렬명사구 범위결정”, 정보과학회논문지:소프트웨어 및 응용, 제35권, 제2호, pp.128-136, 2008.
  10. 박의규, 나동열, “한국어 구문분석을 위한 구묶음 기반 의존명사 처리”, 인지과학, 제17권, 제2호, pp.119-138, 2006.


Supported by : 충북대학교